Обратимый процесс. Необратимые и обратимые процессы


Обратимые и необратимые процессы , пути изменения состояния термодинамической системы. Процесс называют обратимым, если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежуточных состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализированный случай, достижимый лишь при бесконечно медленном изменении термодинамических параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса. Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы называют необратимым.

Необратимые процессы могут протекать самопроизвольно только в одном направлении; таковы , вязкое течение и другое. Для химической реакции применяют понятия термодинамической и кинетической обратимости, которые совпадают только в непосредственной близости к состоянию равновесия. Р-ция А + В С + D наз. кинетически обратимой или двусторонней, если в данных условиях продукты С и D могут реагировать друг с другом с образованием исходных веществ А и В. При этом скорости прямой и обратной реакций, соотв. , где и -константы скорости, [А], [В], [С], [D]- текущие (активности), с течением времени становятся равными и наступает , в котором -константа равновесия, зависящая от температуры. Кинетически необратимыми (односторонними) являются обычно такие реакции, в ходе которых хотя бы один из продуктов удаляется из зоны реакции (выпадает в осадок, улетучивается или выделяется в виде малодиссоциированного соединения), а также реакции, сопровождающиеся выделением большого кол-ва тепла.

На практике нередко встречаются системы, находящиеся в частичном равновесии, т.е. в равновесии по отношению к определенного рода процессам, тогда как в целом система неравновесна. Например, образец закаленной стали обладает пространственной неоднородностью и является системой, неравновесной по отношению к , однако в этом образце могут происходить равновесные циклы механической деформации, поскольку времена диффузии и в отличаются на десятки порядков. Следовательно, процессы с относительно большим временем являются кинетически заторможенными и могут не приниматься во внимание при термодинамич. анализе более быстрых процессов.

Необратимые процессы сопровождаются диссипативными эффектами, сущностью которых является производство (генерирование) в системе в результате протекания рассматриваемого процесса. Простейшее выражение закона диссипации имеет вид:


где средняя температура, d i S- производство энтропии, - т. наз. нескомпенсированная теплота Клаузиуса (теплота диссипации).

Обратимые процессы, будучи идеализированными, не сопровождаются диссипативными эффектами. Микроскопическая теория обратимых и необратимых процессов развивается в статистической термодинамике. Системы, в которых протекают необратимые процессы, изучает термодинамика необратимых процессов.

Лит. см. при ст. Химическая термодинамика. Е. П. Агеее.

Выберите первую букву в названии статьи:

1. Обратимым термодинамическим процессом называется термодинамический процесс, допускающий возможность возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения.
Необходимым и достаточным условием обратимости термодинамического процесса является его равновесность.


2. Необратимым термодинамическим процессом называется термодинамический процесс, не допускающий возможности возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения.
Все реальные процессы протекают с конечной скоростью. Они сопровождаются трением, диффузией и теплообменом при конечной разности между температурами системы и внешней среды. Следовательно, все они неравновесны и необратимы.


Необратимость возникает только в том случае, если частиц много. Если мы имеем систему из большого числа частиц – появляются другие новые законы. Если заснимем движение частицы на пленку, то в любом направлении просмотра всё будет нормально для нас. Если заснимем растворение кристалла и посмотрим в обратном направлении – понятно, что такого не бывает. Для рассмотрения необратимых процессов нужны системы из б.ч.ч. Движение одной частицы обратимо, а группы частиц – необратимо. Для описания системы из б.ч.ч. можно использовать термодинамический или статический метод.

· При термодинамическом методе не важен состав. Важно, как меняется система при действии на нее. Уравнение теплового баланса и уравнение Менделеева-Клапейрона достигло этого подхода. Алгебраическая сумма всех количеств теплоты (поглощенных и выделенных) в теплоизолированной системе равна нулю. Q1+ Q2+…+ Qn= 0, где n – количество тел системы. Q = сm(t2 – t1), где m – масса тела, кг; (t2 – t1) – разность температур тела,° С (или К); с – удельная теплоёмкость вещества, из которого состоит тело. Термодинамика – описательная наука, позволяет исключить невозможные сценарии развития в системе.

· Статическая физика. P=nkT , где k – постоянная Больцмана. (pV=nRt) Давление в газе объяснено упругими соударениями молекул со стенками сосуда – импульс. Статистический подход позволяет понять, что такое давление и абсолютная температура. Абсолютный 0 температур – прекращается всякое движение молекул. - кинетическая энергия связана с температурой. Молекулы обладают разными скоростями. Если бы скорость была равна 0 – вся атмосфера лежала бы на Земле. Если бы скорости молекул ограничены были, то атмосфера обрывалась бы . Атмосфера меняется постепенно, давление уменьшается с высотой. Концентрация молекул и давления в атмосфере станет равным нулю только на бесконечной высоте. Если есть молекулы разных масс: самые легкие будут легче улетать. Водород улетел из атмосферы почти весь. Тяжелые молекулы ближе к Земле. g – постоянна только на небольших расстояниях от Земли. Если расстояние больше вместо g используют . ; . То как ведет себя атмосфера зависит от массы планеты. Маленькие быстрее теряют атмосферу. Скорости молекул простираются от нуля до бесконечности. При хаотическом движении распределение скоростей молекул можно определить (вывел Максвелл).


· Функция распределения Максвелла. Пусть имеется n тождественных молекул, находящихся в состоянии беспорядочного теплового движения при определенной температуре. После каждого акта столкновения между молекулами, их скорости меняются случайным образом. В результате невообразимо большого числа столкновений устанавливается стационарное равновесное состояние, когда число молекул в заданном интервале скоростей сохраняется постоянным. В результате каждого столкновения проекции скорости молекулы испытывают случайное изменение на Δυ x , Δυ y , Δυ z , причем изменения каждой проекции скорости независимы друг от друга. Будем предполагать, что силовые поля на частицы не действуют. Найдем в этих условиях, каково число частиц dn из общего числа n имеет скорость в интервале от υ до υ+Δυ. Скорость – векторная величина. Для проекции скорости на ось х (x -й составляющей скорости) из имеем , тогда . Вероятность того, что молекула обладает скоростью в интервале (Vx;Vx+dVx), будет равна Кол-во молекул конечно, а скоростей бесконечно. - число молекул со скоростью в интервале (Vx;Vx+dVx). Вероятность того, что скорость молекулы одновременно удовлетворяет трём условиям: x-компонента скорости лежит в интервале от υ х до υ х +dυ х; y-компонента, в интервале от υ y до υ y +dυ y ; z-компонента, в интервале от υ z до υ z +dυ z будет равна произведению вероятностей каждого из условий (событий) в отдельности: , где (Vx; Vx+dVx) ; (Vy; Vy+dVy) ; (Vz; Vz+dVz) – число молекул, которые одновременно обладают скоростью в интервалах.

Обратимым термодинамическим процессом называется процесс, допускающий возможность возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения. Обратимым может быть лишь равновесный процесс, так как при равновесном процессе система проходит непрерывную последовательность состояний, бесконечно мало отличающихся друг от друга. Эту последовательность состояний можно пройти (бесконечно

медленно) как в прямом, так и в обратном направлениях, причем возникающие в окружающих телах на любом промежуточном этапе процесса изменения будут отличаться для прямого и обратного процессов лишь знаком. В этих условиях при возвращении системы в исходное состояние все произошедшие в окружающей среде изменения окажутся скомпенсированными.

Примером обратимого механического процесса может служить свободное падение тела без трения (в пустоте). Если такое тело испытывает упругий удар о горизонтальную плоскость, то оно возвратится в исходную точку траектории, причем форма тела и плоскости после удара восстановятся - каких-либо изменений в окружающих телах не произойдет.

Следует отметить, что всякий чисто механический процесс, в котором отсутствует трение, является принципиально обратимым. Запишем первое начало для процесса, переводящего тело из состояния 1 в состояние 2:

Изменяя внешние воздействия, можно тело вернуть из состояния 2 в первоначальное состояние 1. Тогда

В разобранном примере объект наблюдения, претерпев ряд изменений, возвращается в первоначальное состояние. Такого рода процессы называются циклическими или круговыми. Внутренняя энергия есть функция состояния тела поэтому, складывая (64.1) и (64.2), получим:

Пусть переход является равновесным, протекающим при бесконечно малой разности между температурой исследуемой системы и температурами источников теплоты и бесконечно малом различии внутреннего и внешнего давлений. Тогда изменением внешних воздействий (изменением знака малых разностей указанных величин) можно систему вернуть из состояния 2 в начальное состояние равновесно через те же промежуточные состояния, которые имели место в первой стадии процесса (рис. 7.3). В этом случае, очевидно, и согласно Изменение состояний внешних тел связано с совершением над ними (или ими) работы и передачей теплоты, и так как сумма этих эффектов в рассматриваемом случае равна нулю, то указанные тела после ряда изменений возвращаются в первоначальное состояние.

Как известно из опытов, процесс теплопередачи, вызываемый конечной разностью температур и происходящий в сторону убыли температуры, необратим, хотя тела, участвующие в таком процессе, могут претерпевать квазиравновесные изменения. Стало быть, нельзя утверждать, что всякое равновесное изменение тела обратимо.

Поясним это на следующем примере. Пусть имеются два тела с конечной разностью температур (рис. 7.4). Если эти тела соединить плохим проводником тепла А, то их изменения вследствие замедленной теплопередачи будут квазиравновесными. Если после выравнивания температур убрать теплопровод, то тело можно равновесно вернуть в первоначальное состояние через тепловой контакт с термостатом температуры (рис. 7.4). Такая же операция может быть проделана с телом II при использовании другого термостата. В данном примере оба тела возвращаются в первоначальное состояние равновесно, но в целом процесс этот оказывается необратимым из-за того, что в конечном итоге термостат, имеющий температуру отдает некоторое количество теплоты, такое же количество теплоты получит термостат Таким образом, после возвращения тел и II квазиравновесно через тождественные сбстояния в начальные состояния в окружающих телах (термостатах) останутся определенные изменения.

Вернемся к рассмотрению прямых и обратных изменений тела, характеризуемых уравнением (64.3). Пусть прямой процесс 1-2 неравновесен вследствие конечной разности сил внутренних и внешних. Тогда согласно изложенному в § 63 при использовании одних и тех же внешних тел нельзя провести процесс в обратном направлении так, чтобы работы прямого и обратного переходов системы компенсировали бы друг друга: Таким образом, всякий неравновесный процесс необратим: тело, испытывающее неравновесные изменения, можно внешним воздействием вернуть в первоначальное состояние, но при этом в окружающих телах останутся определенные изменения

Ярким примером необратимого процесса является расширение газа в пустоту (в вакуум). При таком расширении газ не совершает работу (внешние тела отсутствуют). Этот пример показывает, что всякий необратимый процесс в одном направлении протекает самопроизвольно, но для возвращения газа в первоначальное состояние (для обращения процесса) следует затратить определенную работу (работу сжатия газа), что будет связано с определенными изменениями в окружающих телах. Физическую природу необратимости легче всего пояснить на примере взаимной диффузии двух газов. В

цилиндре с перегородкой, по одну сторону которой находится гелий (малые молекулы), по другую - аргон (большие молекулы), уберем перегородку и проследим (хотя бы мысленно) за необратимым процессом взаимной диффузии газов. Молекулы гелия, сталкиваясь с большими частицами аргона, постепенно будут проникать в объем, занятый аргоном, молекулы же аргона проникнут в объем, где был чистый гелий. Каждый раз, когда происходит столкновение двух разных молекул, они строго по законам механики разлетаются в определенных направлениях, при этом акты взаимодействия молекул обратимы. В результате же множества столкновений частиц возникают необратимые изменения в системе. Если мы могли бы заснять на кинопленку все акты столкновений, то, запустив фильм в обратном направлении, мы ничего парадоксального не увидели бы в картине столкновения любой пары молекул. В конечном же результате обратимое протекание всех столкновений приведет к самопроизвольному разделению компонент газовой смеси, что в природе не наблюдается. В разобранном примере в начале опыта в системе был известный порядок - два различных газа находились в разных частях объема цилиндра. В хаосе молекулярных столкновений первоначальный порядок нарушился. Переход от более упорядоченных состояний к менее упорядоченным - вот в чем физическая сущность необратимости. Необратимость есть результат проявления статистических закономерностей, свойственных системам с большим числом частиц.

Все возможные процессы делятся на обратимые и необратимые. Соответственно второе начало термодинамики формулируется для обратимых и необратимых процессов. Исторически второе начало термодинамики было сформулировано на основе анализа циклических процессов, хотя в настоящее время в теоретических курсах пользуются и другим, чисто аналитическим методом выведения этого закона. Мы будем пользоваться методом ихлов как более наглядным и легче воспринимаемым на первой стадии ознакомления с термодинамикой. Предварительно же нам придется более подробно остановиться на некоторых особенностях циклов.

Термодинамический процесс называетсяобратимым ,если он может проходить как в прямом, так и в обратном направлении; при этом после возвращения системы в исходное состояние в окружающей среде и в самой системе не происходит никаких изменений.

Равновесный (квазистатический) процесс представляет собой непрерывную последовательность равновесных состояний. Любая точка такого процесса – состояние равновесия, из которого система может идти как в прямом, так и в обратном направлении. Отсюда следует, что любой равновесный процесс обратим.

Только термодинамически равновесные процессы можно изображать графически, потому что для неравновесной системы значение параметров, например, температуры или концентрации, объёму неодинаково, а для всей системы является неопределённой величиной. Процессы, происходящие в таких системах, могут быть изображены графически только приближённо, по усреднённым значениям параметров.

Можно привести пример обратимого процесса из механики – абсолютно упругое соударение. Если заменить переменную времени t на –t , то при абсолютно упругом ударе начальные и конечные скорости тел просто поменяются ролями. Законы Ньютона обратимы.

Обратимые процессы – идеализация. Все реальные процессы в той или иной степени необратимы из-за трения, диффузии, теплопроводности. Все явления переноса – необратимые процессы. Теплота сама собой может переходить только от горячего к холодному, но никогда наоборот. Ещё пример необратимого процесса: абсолютно неупругое соударение, при котором механическая энергия превращается частично или полностью в теплоту.

Обратимые процессы наиболее экономичны, система при таких процессах совершает максимальную работу, а КПД оказывается максимальным.

9) Цикл Карно. Теорема Карно .

Попробуем создать тепловую машину, при работе которой используются только обратимые процессы.

Обратимым может быть адиабатный процесс – теплопередачи там нет вообще; работа внешних сил идёт на приращение внутренней энергии или наоборот, работа системы совершается за счёт убыли внутренней энергии системы, и эти процессы обратимы.

Но теплопередачу от нагревателя как-то надо осуществить, иначе за счёт какой тепловой энергии мы получим полезную работу? Обратимый процесс теплопередачи между двумя телами можно осуществить в изотермическом процессе, если температура обоих тел равна. Тогда безразлично, в какую сторону течёт поток теплоты. Но такой процесс будет и бесконечно медленным.

В цикле Карно (рис.8.10 и 8.11) идеальный газ проходит цикл, состоящий из двух адиабат (2-3 и 4-1) и двух изотерм (1-2 и 3-4).

1-2 – изотермическое расширение от объёма V 1 до V 2 ; при этом газ находится в контакте с нагревателем при температуре T 1 ;

2-3 – адиабатическое расширение от объёма V 2 до V 3 ; конечная температура газа равна температуре охладителя T 2 ;


3-4 – изотермическое сжатие от объёма V 3 до V 4 ; при этом газ находится в контакте с охладителем при температуре T 2 ;

4-1 – адиабатическое сжатие от объёма V 4 до V 1 ; конечная температура газа равна температуре нагревателя T 1 .

Для изотермических процессов:

Для адиабатических процессов:

;

.

Тогда из последних двух равенств:

Тогда КПД цикла Карно равен:

.

Доказана первая часть теоремы Карно:

1) КПД цикла Карно не зависит от природы рабочего тела и определяется только температурами нагревателя и охладителя:

Сформулируем две другие части теоремы Карно, а докажем их позже.

2)КПД любого обратимого цикла не больше КПД цикла Карно с теми же температурами нагревателя и охладителя:

. (8.39)

3)КПД любого необратимого цикла меньше КПД цикла Карно с теми же температурами нагревателя и охладителя:

. (8.40)

Энтропия.

Определение энтропии



Понятие энтропии было введено Клаузиусом. Энтропия – это одна из функций состояния термодинамической системы. Функция состояния – это такая величина, значения которой однозначно определяются состоянием системы, а изменение функции состояния при переходе системы из одного состояния в другое определяется только начальным и конечным состояниями системы и не зависят от пути перехода.

Внутренняя энергия U – функция состояния. Внутренняя энергия идеального газа равна , и её изменение определяется только начальной и конечной температурами: . Величина – это молярная теплоёмкость идеального газа при постоянном объёме.

Количество теплоты Q и работа A не являются функциями состояния: они зависят от пути перехода системы из начального состояния в конечное. Например, пусть идеальный газ переходит из состояния 1 в состояние 2, совершив последовательно сначала изобарный процесс, затем – изохорный (рис.8.12, а ). Тогда совершённая за весь процесс работа равна . Пусть теперь из 1 в 2 идеальный газ переходит, сначала совершив изохорный процесс, а затем изобарный (рис.8.12, b ). Работа при таком переходе равна . Очевидно, . Величина работы оказалась разная, хотя начальное и конечное состояние одинаковы. Поскольку по первому закону термодинамики количество теплоты, сообщённое системе, идёт на приращение внутренней энергии и на работу системы против внешних сил: , то теплота, полученная системой в процессах a и b , тоже будет разной, то есть теплота также не является функцией состояния.

С точки зрения математики, малые приращения величин, не являющихся функциями состояния, не будут полными дифференциалами, и для них нужно использовать обозначения: и . Оказывается, что для теплоты интегрирующим множителем является обратная температура: , и величина, равная отношению полученной системой теплоты к абсолютной температуре, является полным дифференциалом – это приведённая теплота: . По определению Клаузиуса, функция состояния системы, дифференциал которой в обратимом процессе равен приведённой теплоте, является энтропией :

Свойства энтропии

1) Энтропия – функция состояния системы, то есть в замкнутой системе в обратимом процессе, когда система возвращается в исходное состояние, полное изменения энтропии равно нулю:

. (8.42)

2) Энтропия аддитивна, то есть энтропия системы равна сумме энтропий всех её частей.

3) Энтропия замкнутой системы не убывает:

причём для обратимых процессов и для необратимых.

Соотношение (8.43) называется неравенством Клаузиуса и представляет собой одну из формулировок второго начала термодинамики: энтропия замкнутой системы остаётся постоянной, если в ней происходят только обратимые процессы, и возрастает в случае необратимых процессов.

Рассмотрим замкнутую систему, состоящую из двух тел с температурами и . Пусть – количество теплоты, полученное вторым телом от первого . Тогда количество теплоты, полученное первым телом, отрицательно и равно . Полное приращение энтропии системы двух тел в процессе теплопередачи равно сумме изменений энтропий двух тел.

Определение 1

Обратимый процесс считается в физике процессом, который возможен для проведения в обратном направлении таким образом, что система будет подвержена прохождению тех же состояний, но в обратных направлениях.

Рисунок 1. Обратимые и необратимые процессы. Автор24 - интернет-биржа студенческих работ

Определение 2

Необратимый процесс считается процессом, самопроизвольно протекающим исключительно в одном направлении.

Термодинамический процесс

Рисунок 2. Термодинамические процессы. Автор24 - интернет-биржа студенческих работ

Термодинамический процесс представляет непрерывное изменение состояний системы, которое происходит в итоге ее взаимодействий с окружающей средой. Внешним признаком процесса будет считаться в таком случае изменение хотя бы одного параметра состояния.

Реальные процессы изменения состояния проистекают при условии присутствия значительных скоростей и разностей потенциалов (давлений и температур), существующих между системой и средой. В подобных условиях появится сложное неравномерное распределение параметров и функций состояния, исходя из объема системы, пребывающей в неравновесном состоянии. Термодинамические процессы, предусматривающие прохождение системы через ряд неравновесных состояний, будут называться неравновесными.

Изучение неравновесных процессов считается сложнейшей для ученых задачей, поскольку разработанные в рамках термодинамики методы приспособлены в основном для исследования равновесных состояний. К примеру, неравновесный процесс весьма сложно рассчитывается посредством уравнений состояния газа, применимых для равновесных условий, в то время, как в отношении всего объема системы давление и температура обладают равными значениями.

Возможно было бы выполнять приближенный расчет неравновесного процесса путем подстановки в уравнение средних значений параметров состояния, но в большинстве случаев осреднение параметров по объему системы становится невозможным.

В технической термодинамике в рамках исследования реальных процессов условно принимают распределение параметров состояния равномерным образом. Это, в свою очередь, позволяет воспользоваться уравнениями состояния и иными расчетными формулами, полученными с целью равномерного распределения в системе параметров.

В некоторых конкретных случаях погрешности, обусловленные подобным упрощением, незначительны и при расчете реальных процессов их возможно не учитывать. Если в результате неравномерности процесс ощутимо отличается от идеальной равновесной модели, то в расчет внесут соответствующие поправки.

Условия равномерно распределенных параметров в системе при изменении ее состояния, по существу подразумевают взятие идеализированного процесса в качестве объекта исследования. Подобный процесс при этом состоит из бесконечно большого количества равновесных состояний.

Такой процесс возможно представить в формате протекающего настолько медленно, что в каждый конкретный момент времени в системе установится практически равновесное состояние. Степень приближения такого процесса к равновесному окажется тем большей, чем меньшей будет при этом скорость изменения системы.

В пределе мы приходим к бесконечно медленному процессу, предоставившему непрерывную смену для состояний равновесия. Подобный процесс равновесного изменения состояния будет называться квазистатическим (или как бы статическим). Такому виду процесса будет соответствовать бесконечно малая разность потенциалов между системой и окружающей средой.

Определение 3

При обратном направлении квазистатического процесса система будет проходить через состояния, аналогичные тем, что происходят в прямом процессе. Такое свойство квазистатических процессов называют обратимостью, а сами процессы при этом являются обратимыми.

Обратимый процесс в термодинамике

Рисунок 3. Обратимый процесс в термодинамике. Автор24 - интернет-биржа студенческих работ

Определение 4

Обратимый процесс (равновесный) – представляет термодинамический процесс, способный к прохождению и в прямом, и в обратном направлении (за счет прохождения через одинаковые промежуточные состояния), система при этом возвращается в исходное состояние без энергетических затрат, а в окружающей среде не остается никаких макроскопических изменений.

Обратимый процесс возможно в абсолютно любой момент времени заставить протекать в обратном направлении, за счет изменения какой-либо независимой переменной на бесконечно малую величину. Обратимые процессы могут давать наибольшую работу. Большую работу от системы получить невозможно ни при каких условиях. Это придает теоретическую важность обратимым процессам, реализовать которые на практике также нереально.

Такие процессы протекают бесконечно медленно, и становится возможным лишь приблизиться к ним. Важно отметить существенное отличие термодинамической обратимости процесса от химической. Химическая обратимость будет характеризовать направление процесса, а термодинамическая – способ, при котором он будет проводиться.

Понятия обратимого процесса и равновесного состояния играют очень значимую роль в термодинамике. Так, каждый количественный вывод термодинамики будет применим исключительно в отношении равновесных состояний и обратимых процессов.

Необратимые процессы термодинамики

Необратимый процесс невозможен к проведению в противоположном направлении посредством все тех же самых промежуточных состояний. Все реальные процессы считаются в физике необратимыми. В качестве примеров таких процессов выступают следующие явления:

  • диффузия;
  • термодиффузия;
  • теплопроводность;
  • вязкое течение и др.

Переход кинетической энергии (для макроскопического движения) в теплоту через трение (во внутреннюю энергию системы) будет представлять собой необратимый процесс.

Все осуществляемые в природе физические процессы подразделяются на обратимые и необратимые. Пусть изолированная система вследствие некоего процесса осуществит переход из состояния А в состояние В и затем возвратится в свое изначальное состояние.

Процесс, в таком случае, станет обратимым в условиях вероятного осуществления обратного перехода из состояния В в А через аналогичные промежуточные состояния таким путем, чтобы при этом не оставалось совершенно никаких изменений в окружающих телах.

Если осуществление подобного перехода невозможно и при условии сохранения по окончании процесса в окружающих телах или внутри самой системы каких-либо изменений, то процесс окажется необратимым.

Любой процесс, сопровождающийся явлением трения, станет необратимым, поскольку, в условиях трения, часть работы всегда превратится в тепло, оно рассеется, в окружающих телах сохранится след процесса – (нагревание), что превратит процесс (с участием трения) в необратимый.

Пример 1

Идеальный механический процесс, выполняемый в консервативной системе (без сил трения), стал бы обратимым. Примером подобного процесса можно считать колебания на длинном подвесе тяжеловесного маятника. По причине незначительной степени сопротивления среды, амплитуда маятниковых колебаний становится практически неизменной на протяжении продолжительного времени, кинетическая энергия колеблющегося маятника при этом оказывается полностью переходящей в его потенциальную энергию и обратно.

В качестве важнейшей принципиальной особенности всех тепловых явлений (где участвует громаднейшее количество молекул), будет выступать их необратимый характер. Примером процесса такого характера можно считать расширение газа (в частности, идеального) в пустоту.

Итак, в природе наблюдается существование двух видов принципиально различных процессов:

  • обратимых;
  • необратимых.

Согласно заявлению М. Планка, сделанного однажды, различия между такими процессами, как необратимые и обратимые, будут лежать значительно глубже, чем, к примеру, между электрическими и механическими разновидностями процессов. По этой причине, его с большим основанием (сравнительно с любым другим признаком) имеет смысл выбирать как первейший принцип в рамках рассмотрения физических явлений.