Напряжение газов в крови капилляров легких. Скорость диффузии кислорода и углекислого газа в легких. Уравнение Фика. Уравнение фика Диффузия уравнение фика коэффициент диффузии

В предыдущих параграфах были рассмотрены характерные черты молекулярно-теплового движения, тепловое равновесие и процессы, происходящие, когда тепловое равновесие нарушено (излучение, теплопроводность и конвекция). Все это еще не дает, однако, полного представления о молекулярно-тепловом движении. Мы должны обратиться к явлению диффузии - к явлению, которое обязывает нас перейти от понятия теплового равновесия к понятию термодинамического равновесия.

Диффузией называется обусловленный хаотическим движением молекул процесс постепенного взаимного проникновения двух веществ, граничащих друг с другом. Один из первых опытов по исследованию диффузии был сделан немецким физиком Лошмидтом. Он взял две стеклянные трубки, закрытые с одного конца, имевшие в длину около полметра, в диаметре 2,5 см; одну трубку он наполнил углекислым газом, а другую - водородом и поместил их в вертикальном положении так, что открытые концы трубок соприкасались; При этом трубка с углекислым газом была внизу (последнее было необходимо для того, чтобы смешение обоих газов происходило лишь вследствие молекулярных движений, а не вследствие различной тяжести этих газов). Содержимое трубок было исследовано через полчаса; оказалось, что в верхнюю трубку проникло из нижней 37% углекислого газа.

Если бы молекулы газа вообще не сталкивались, то благодаря своим большим скоростям они уже за малую часть секунды пробегали бы значительные расстояния по прямой линии. Поэтому процесс смешения двух газов, соприкасающихся друг с другом, шел бы чрезвычайно быстро. Опыт Лошмидта показывает, что в действительности диффузия газа происходит не особенно быстро. Это видно уже из обыденных явлений: например, если в одном углу комнаты

открытфлакон с духами и если воздух в комнате находится в макроскопическом покое, то пройдет немало времени, прежде чем мы почувствуем появление запаха духов в противоположном углу комнаты.

Сравнительная медленность процесса диффузии является результатом молекулярных столкновений, вследствие которых молекула может быть отброшена назад в ту сторону, откуда она пришла. Мы знаем, что в результате столкновений молекула описывает чрезвычайно запутанную зигзагообразную траекторию; за 1 сек. она пройдет по этой траектории несколько сот метров и все-таки может находиться очень недалеко от исходного положения. Поэтому процесс диффузии газов протекает тем медленее, чем больше число столкновений, испытываемых молекулой в секунду, или, другими словами, чем меньше средний свободный пробег молекулы.

Два соприкасающихся газа всегда диффундируют друг в друга (за исключением того случая, если они моментально соединяются химически). Этого нельзя сказать без некоторых оговорок про жидкости. Две жидкости неограниченно диффундируют друг в друга лишь в том случае, если они способны смешиваться друг с другом. Поэтому можно, например, наблюдать взаимную диффузию воды и спирта, воды и эфира, керосина и растительного масла. Но имеются жидкости, которые не вполне смешиваются друг с другом. При слиянии таких жидкостей вначале наблюдается диффузия, но когда некоторое количество первой жидкости растворится во второй и некоторое количество второй жидкости растворится в первой, то диффузия приостанавливается и сколь бы долго эти растворы ни находились в соприкосновении, их химический состав больше не изменяется (наступает термодинамическое равновесие, § 98). Некоторые жидкости так мало растворимы друг в друге, что диффузия одной жидкости в другую практически не наблюдается (например, вода и ртуть).

Диффузия жидкостей наблюдается особенно легко в том случае, если одна из жидкостей бесцветна, а другая окрашена. Можно применить, например, воду и раствор медного купороса в воде. Стеклянный цилиндр наполняют до половины водой, а затем при помощи воронки с длинной трубкой наливают на дно цилиндра более тяжелый раствор медного купороса. Граница между обеими жидкостями, вначале резкая, станет постепенно размываться, но для полного смешения обеих жидкостей потребуется несколько месяцев. Это показывает, что число столкновений, испытываемых молекулой в жидкой среде, во много раз больше, чем для случая среды газообразной. Причина этого, понятно, заключается в том, что в единице объема жидкостей содержится гораздо большее число молекул, чем в единице объема газа.

Закон диффузии в жидкой среде (пригодный также и для среды газообразной) был найден немецким физиком Фиком. Этот закон

выражается формулой

где есть количество диффундирующего вещества (например, медного купороса), проходящего за время через площадку расположенную перпендикулярно к направлению, в котором движется вещество; с, и концентрации диффундирующего вещества в двух слоях, отстоящих друг от друга на расстоянии наконец, коэффициент диффузии. Этот коэффициент зависит от природы среды, от природы диффундирующего вещества и от условий, при которых находятся среда и диффундирующее вещество (для жидкостей - от температуры, для газов - от температуры и от плотности).

При этом предполагается, что концентрация в жидком или газообразном столбе изменяется равномерно подлине столба, т. е. и что столб находится в установившемся состоянии, т. е. в каждом сечении его концентрация с течением времени не меняется.

В более общем виде закон Фика может быть выражен следующей формулой:

т.е. количество вещества диффундирующее за промежуток времени через площадку нормальную к той линии I, вдоль которой происходит диффузия, пропорционально времени площади и градиенту концентрации

Из приведенных формул легко видеть, что коэффициент диффузии численно равен количеству диффундирующего вещества, проникающего за единицу времени через единицу поверхности при условии, что разность концентраций на двух поверхностях, отстоящих друг от друга на единицу длины, равна единице.

Нетрудно сообразить, что размерность коэффициента диффузии . В абсолютной системе единиц коэффициент диффузии измеряется в Для разных газов при нормальных условиях имеет значения примерно от 0,1 до для жидкостей (т. е. в раз меньше, чем для газов).

Сравнивая формулу, выражающую закон Фика, с формулами, выражающими закон Фурье для теплопроводности и закон Ома для электрического тока, легко заметить, что все три закона формально аналогичны. В случае диффузии разность концентраций играет ту же роль, какую играют разность температур в явлении теплопроводности и разность потенциалов в явлении электрического тока.

Строгая экспериментальная проверка закона Фика была произведена Н. А. Умовым в 1888-1891 гг. Умов показал, что закон Фика точен только для случаев полной изотермичности среды и малых концентраций растворов.

В любом однородном веществе, газообразном или жидком, молекулы одной части вещества непрестанно диффундируют в другую часть вещества; это - так называемая самодиффузия. В последнее время самодиффузия была исследована экспериментально; для этой цели вносят в некоторый участок вещества небольшое количество радиоактивной разновидности молекул того же вещества и следят за распространением радиоактивных свойств по всей массе вещества.

Коэффициент самодиффузии газа, как было теоретически установлено Максвеллом, равен произведению одной трети средней скорости молекул на их среднюю длину свободного пробега:

Эту формулу можно было бы вывести посредством таких же простых рассуждений, которые приведены далее (в §§ 93 и 94) для вывода аналогичных формул, определяющих коэффициенты теплопроводности и вязкости газов. Но обычно в приложениях физики приходится иметь дело не с самодиффузией, а с взаимной диффузией веществ. В этом случае теоретический расчет более сложен. Однако в итоге оказывается, что коэффициент взаимодиффузии газов может быть вычислен «по Правилу смешения» из коэффициентов самодиффузии обоих газов, а именно: если коэффициент самодиффузии первого газа, коэффициент самодиффузии второго газа, а и -числа молекул каждого из этих, газов в единице объема смеси газов в том месте, где нас интересует ход взаимной диффузии, то

Это уравнение справедливо только в том случае, когда газы диффундируют друг в друга, находясь под одинаковым давлением в этом случае диффузионный поток стационарен и суммарная концентрация обоих газов в разных участках смеси одинакова и неизменна во времени, т. е. При указанном условии коэффициент диффузии первого газа во второй равен коэффициенту диффузии второго газа в первый:

Коэффициенты самодиффузии и взаимодиффузии зависят от плотности газа в такой же мере, как и свободный пробег; свободный пробег обратно пропорционален плотности газа (§ 89), поэтому и коэффициент диффузии обратно пропорционален плотности газа. Если

Коэффициент диффузии при давлении и абсолютной температуре то при давлении и температуре коэффициент диффузии газа будет:

Что касается зависимости коэффициента диффузии от процентного состава смеси газов (от отношения то опыт в согласии с уточненной теорией показывает, что коэффициент диффузии мало изменяется при изменении процентного состава смеси.

Коэффициенты самодиффузии и взаимодиффузии некоторых газов при нормальной температуре и плотности (при приведены в помещенных ниже таблицах.

Коэффициенты самодиффузии газов

(см. скан)

Коэффициенты взаимодиффузии газов

(см. скан)

Для жидкостей коэффициент диффузии имеет величину, как уже упоминалось выше, в сотни тысяч раз меньшую, чем для газов. Например, коэффициент диффузии поваренной соли в воде при 10° С равен:

Коэффициент диффузии сахара в воде почти в три раза меньше, чем указанный коэффициент диффузии поваренной соли. Наибольшую величину имеет коэффициент диффузии водорода в воде - около

Сопоставляя диффузию в жидкостях и в газах, следует отметить, что в жидких растворах часто реализуются весьма большие градиенты концентраций. Поэтому интенсивность диффузионного потока в жидкостях часто оказывается вовсе не такой малой, как это можно было бы ожидать, судя по малой величине коэффициента диффузии.

Явление диффузии играет большую роль в природе и технике. Корни растений захватывают необходимые для растения вещества из почвенных вод благодаря диффузионному потоку внутрь корней. Интенсивность этого диффузионного потока поддерживается тем, что внутри корней нужные для растения вещества быстро «усваиваются», т. е. химически преобразуются, так что концентрация этих веществ у поверхности корней оказывается все время пониженной, что и вызывает диффузию нужных веществ из окружающей почвы к корням. Что же касается бесполезных и вредных для растения веществ, то они не перерабатываются растением в другие вещества, и поэтому их концентрация внутри и у поверхности корней быстро сравнивается с концентрацией этих веществ в окружающей почве; это приостанавливает диффузионный приток. Таким образом, диффузия помогает растению осуществить «выбор» и извлечение из почвы тех веществ, которые необходимы растению для построения его клеток.

Аналогично диффузия используется тканями пищеварительной системы животных и человека для «выбора» и извлечения из пищи веществ, необходимых организму. Пища превращается в желудке и в кишечнике в растворимое состояние, и нужные организму вещества диффундируют через стенки пищеварительного тракта.

В технике диффузией пользуются постоянно для извлечения (экстракции) различных веществ, например сахара из сырой свеклы, дубильных веществ, красителей, разнообразных веществ в химических производствах (чилийской селитры, едкого натра и др.).

А. Эйнштейн (в 1905 г.) развил теорию диффузии жидкостей, использовав полученные им уравнения для броунова движения и применив закон Стокса (§ 53) к движению молекул растворенного вещества. Это привело Эйнштейна к формуле

где коэффициент диффузии растворенного вещества, - коэффициент вязкости раствора, больцманова постоянная, абсолютная температура и некоторый эффективный радиус молекулы диффундирующего вещества.

Формула Эйнштейна удовлетворительно определяет величину для растворов некоторых веществ, молекулы которых велики в сравнении с молекулами растворителя.

Другая формула для коэффициента диффузии жидкостей будет пояснена в § 117.

Явление диффузии наблюдается и в твердых телах. Например, при накаливании железа с углем уголь диффундирует в железо. Явлением диффузии углерода в железо пользуются при цементации

(при поверхностном науглероживании железных изделий), чтобы после закалки получить изделия с твердым наружным слоем, но вязкой сердцевиной (цементацию производят, нагревая железное или стальное изделие в саже, в древесном угле или в коксе или же помещая изделие при температуре 600-1000° в газообразную окись углерода).

Коэффициент диффузии в твердых металлах по порядку величины в 1 000 000 раз меньше, чем в жидкостях, поэтому диффузию в твердых телах называют «вековым» процессом (тем не менее диффузия в твердых металлах, состоящих из отдельных разнородных по химическому составу зерен, существенно влияет на свойства металла).


Первое уравнение Фика позволяет определить суммарный поток j атомов через единицу поверхности в единицу времени между двумя соседними плоскостями кристаллов решётки, расположенной на расстоянии Δ (рис.8.1).

Рис.8.1. Суммарный поток j атомов через единицу поверхности

в единицу времени между двумя соседними плоскостями 1 и 2 кристаллов решетки,

расположенных на расстоянии ∆

Число скачков атомов в двух противоположных направлениях равновероятно, подставим в уравнения встречных потоков атомов ½:

,

где - концентрация атомов в плоскости 1 и 2 кристаллической решётки, соответственно, ат/м 3 , - среднее время между скачками атомов С.

Тогда суммарный поток атомов:

(8.1)

По теореме Лагранжа о среднем

(8.2)

Подставив уравнение (6.2) в (6.1), получим:

(8.3)

где

Коэффициент пропорциональности D называют коэффициентом диффузии.

Знак (-) в уравнении обозначает, что в рассматриваемом случае суммарный поток j и градиент концентрации вещества направлены противоположно, т.е. диффузия идёт в сторону меньших концентраций.

Иногда вводят понятие частоты атомных скачков:

Так как за время число скачков , то для двух направлений оси х

Пусть - частота скачков атома в один из ближайших узлов кристаллической решётки данного типа. Тогда суммарная частота атомных скачков ,

где К – координационное число или число ближайших равноудалённых атомов, а коэффициент диффузии

Вблизи температуры плавления атом совершает диффузные скачки в среднем 10 млн раз в сек ( = 10 7 с -1).

Согласно А. Эйнштейну, диффузионный путь атома

,

а общее расстояние, которое он проходит за время

Принимая для и вблизи t° пл. Δ ≈ 0,3 нм, Г =10 7 с -1 получаем, что за 100 часов (360000 с) диффузии , а

При этом атом смещается от исходного положения на 0,57 нм.

Коэффициент диффузии зависит от температуры :

где - предэкспоненциальный множитель, который при самодиффузии в металлах изменяется от 10 -6 до 10 -4 м 2 с.

Q – энергия активации диффузии.

где -универсальная газовая постоянная, равная 8,31441 Дж/(моль К), R=KN A

N A - число Авогадро = 6,022045*10 23 моль -1 .

Энергия активации Q различных металлов изменяется от 100 до 600 кДж/моль.

8.2. Механизмы диффузии в металлах и полимерах

Вопрос определения механизма диффузии является сложным. Огромное влияние играют дефекты кристаллической решетки, особенно вакансии.

Возможные механизмы диффузии (рис.8.2):

Простой обменный (1)

Циклический обмен (2)

Вакансионный (3)

Простой межузельный (4)

Межузельный механизм вытеснения

Краудионный.

Коэффициент пограничной диффузии (D ) на 3-5 порядков больше коэффициента объемной диффузии.

Итак, в основе любой теории диффузии (красителей в волокнистых материалах, компонентов в пластических массах, обмена ионов в ионообменных материалах, а также частиц в кристаллических веществах, включающих металлы, полупроводники, оксиды, керамику, стекла и т.д.), лежат законы Фика. Существуют два закона Фика – первый и второй.

Первый закон Фика описывает квазистационарные процессы, когда проницаемая для обменивающихся местами частиц мембрана (пластинка) разделяет две среды (которые могут быть жидкими или газообразными) с существенно постоянными условиями на границах раздела. Эта мембрана может быть инертной по отношению в диффундирующим веществам (например, пористое стекло, разделяющее водные солевые растворы различной концентрации или солевого состава) или активной по отношению к одному или нескольким диффундирующим компонентам (например, палладиевая мембрана, пропускающая через себя водород при высокой температуре из-за специфических процессов сорбции на ее границе и практически не пропускающая другие газы).

Уравнение, описывающее первый закон Фика, имеет следующий вид:

где j – поток вещества через единицу поверхности, D – коэффициент диффузии (в общем случае – коэффициент взаимодиффузии), C - концентрации по толщине мембраны, равная разнице концентраций переносимого вещества по обе стороны мембраны, x - толщина мембраны.

Очевидно, что к обсуждаемым нами процессам образования цинкового покрытия это уравнение неприменимо, поскольку изучаемые нами процессы являются нестационарными.

Второй закон Фика описывает нестационарные процессы, и именно его необходимо применять для описания закономерностей, с которыми имеют дело как металлурги, так и работники других специальностей, соприкасающиеся с проблемами массопереноса в твердых телах.

Рассмотрим его действие на следующем примере. Возьмем два одинаковых образца, имеющих плоскую поверхность и состоящих из металла, который под воздействием нейтронного облучения способен создавать радиоактивные атомы той же природы. Облучим нейтронным потоком один из двух образцов с тем, чтобы создать в нем радиоактивность, соединим плотно по поверхностям облученный и необлученный образцы между собой и для убыстрения процесса будем выдерживать эту композицию при повышенной температуре. Вследствие теплового движения радиоактивные атомы из одной части образца будут диффундировать во вторую его часть, причем этот процесс будет продвинут тем более, чем более высока температура и чем больше время опыта. Затем образцы разъединим, и в каждом образце послойно измерим радиоактивность (технология этого типа эксперимента разработана очень хорошо). В результате эксперимента получаются кривые, изображенные на рис. 7.38, которые соответствующим образом обрабатываются для расчета эффективных коэффициентов диффузии. Концентрация радиоактивных ионов на межфазной границе будет равна половине той, что была в исходном левом образце, а сам процесс диффузии будет описываться уравнением:

Метод обработки таких кривых, как следует из литературы, был предложен физиком по фамилии Матано, и, как правило, называется методом Матано и иногда методом Матано- Больцмана (вероятно, из-за того, что метод возник как результат анализа решений уравнений диффузии, полученных одним из великих физиков теперь уже позапрошлого века Больцманом).

Если поверхность образца контактирует с какой-либо средой в жидкой форме, то на границе раздела концентрация данной среды, как правило, остается постоянной, но на форме фронта в железном образце эта особенность эксперимента при условии постоянства эффективного коэффициента диффузии сказывается достаточно мало (рис.7.39 ).

Для процесса цинкования необходимо смоделировать именно такую картинку. В этом случае концентрация диффундирующего вещества на границе двух сред является практически постоянной, и диффузия вещества в другую среду будет идти до тех пор, пока не достигнет стационара.

Рис. 7.38. Форма фронта диффузии при контакте двух твердых образцов, в одном из которых (в данном случае слева) методом нейтронного облучения созданы радиоактивные атомы, для двух значений времени эксперимента.

Рис. 7.39

Уравнение нестационарной диффузии описывается, как было уже сказано, вторым законом Фика, который для диффузии с постоянной концентрацией на границе двух фаз имеет следующий вид:

где n = 2, 1 или 0 – для шара, бесконечного цилиндра и бесконечной пластины.

Для бесконечной пластины уравнение имеет вид:

Ниже приведены соответствующие решения для степени завершения обмена как функции времени при постоянных коэффициентах диффузии:

для шара:

для пластины:

и для бесконечного цилиндра:

μ - корни функции Бесселя нулевого порядка, Bt = π 2 F 0

N - степень завершения процесса обмена

F 0 = D*t / l 2 - безразмерный параметр, где (D - коэффициент диффузии, t - время, l - линейный параметр)

Эти уравнения показывают, какая доля атомов (от максимально возможной) накапливается в поглощающей части образца.

Анализ показывает, что получаемые кривые, изображенные на рис. 7.39 , никоим образом не напоминают типичный фронт сорбции цинка поверхностью железа, картинку которого можно видеть на рис. 7.40. Если верить кривой, полученной на рис. 7.39 , наибольшей толщиной должны обладать ζ - и Г1 -фазы, а δ -фаза должна иметь промежуточную толщину (о η -фазе мы поговорим несколько позже). Аналогичные результаты (то есть не совпадающие с фронтом, изображенным на рис. 7.39 ) были получены в значительном количестве исследований, и вот отсюда начинается игра ума.

Одни начинают искать причину в том, что поскольку изучаемое тело имеет кристаллическую структуру, то коэффициенты диффузии в различных направлениях являются различными. Действительно, на монокристаллах в ряде случаев это доказано. Но вот беда: сталь – это поликристаллическое тело, и для процесса цинкования этим вряд ли можно объяснить упомянутые выше экспериментальные закономерности.

Другие ищут причину отклонения от теоретической зависимости в методе Матано в том, что необходимо в уравнении второго закона Фика использовать не градиент концентрации, а градиент химического потенциала. В этом случае уравнение значительно усложняется, и неизвестно, какие результаты – отражающие или не отражающие действительность – будут получены.

Наконец, третьи пошли логически более правильным путем. На самом деле, при диффузии в металле с примесью (сплаве) диффундирует не один вид частиц, а, как минимум, два. Эти два вида частиц диффундируют навстречу друг другу, к тому же обладают различной подвижностью. Если отсчитывать скорость их передвижения от некоторой воображаемой плоскости (рис 7.41 ), то будет обнаружено, что через некоторое время эксперимента эта плоскость передвинется в сторону той части образца, которая содержит более быстрые частицы (эффект Киркендаля ).

Рис. 7.40.

Рис. 7.41 . Сущность эффекта Киркендаля. Пластина из латуни окружена слоем меди, нанесенной электролитически, причем на границе латунного образца предварительно закреплены метки из молибденовой проволоки. В результате выдерживания образца в течение нескольких сотен часов при повышенной температуре метки передвинулась внутрь образца.

Когда анализируют данные по кинетике образования цинк- железного покрытия на образце, исследуются дотошно любые факты, включая тип и структуру образующихся железо-цинковых сплавов, но ни в одной статье до настоящего времени не анализировалась форма фронта цинка в покрытии. Между тем, именно форма фронта говорит о многом, и именно выяснение причин ее образования может стать ключом к количественному описанию скорости образования железо-цинковых слоев.Обратим внимание на следующее. Почти во всех исследованиях в низкотемпературной области (достоверных сведений о форме фронта в высокотемпературной области нами не найдено) образуется форма обрывного фронта, близкая к изображенной на рис. 7.40. Эта форма не сильно зависит от температуры процесса, толщины образующегося покрытия и наличия или отсутствия в образце кремния (фосфора). Между тем имеется очень мало процессов, которые характеризуются такой формой фронта. Одним из таких процессов является процесс горения с быстрым отводом образующихся продуктов горения от поверхности. Для горящего шара, например, процесс горения описывается уравнением:

где R - радиус шара до начала горения, r - радиус координаты горения, D - коэффициент диффузии.

Очевидно, что если мы сделаем плоский образец с защитой боковых поверхностей, то процесс горения будет происходить только на одной из поверхностей без изменения ее реальной площади, то есть скорость уменьшения толщины образца будет пропорциональна времени. Пример такого процесса – «курение сигареты» автоматическим курильщиком с постоянной скоростью просасывания воздуха через образец.

Между тем, в огромном большинстве исследований наблюдается обратноквадратичная зависимость скорости образования слоя (скорости вымывания железа в расплав) от времени, то есть выполняется зависимость:

Однако необходимо тщательно проверить последнее утверждение, прежде чем принимать его за аксиому.

На рис. 7.42 и 7.43 приведены данные по зависимости скорости накопленияжелеза в расплаве от времени при различных температурах. В книге утверждается, что при построении этих данных в координатах получаются прямые линии для всех температур, кроме данных при 510°С, где наблюдается прямолинейная зависимость. Проверим это утверждение.

Свободная диффузия. Уравнение Фика.

Диффузия- процесс переноса веществ из области с большой концетрацией в область с меньшей концетрацией за счет теплового движения молекул.

Диффузия незаряженных частиц уменьшается в сторону этого градиента до тех пор, пока не достигнет состояния равновесия, пассивный транспорт, поскольку не требует затрат внешней энергии. Характеристика диффузии – поток вещества(φ)массо перенасимое через поверхность S перпендикулярно потоку вещества за единицу времени φ=φ/t

Отношения потока вещества к площади плотности потока j=φ/s

Уравнение диффузии Фика

j=-Ddc/dx=-DSgradC

«=» - показывает направление потока в сторону уменьшения концетрации(т.е. против gradC) D-коэффициент диффузии D=RT/(6πηrN_A)

Для биомембран существенное значение имеет коэффициент распределения вещества между липидными слоями и водой. Поэтому j=D_k/l(C_2-C_1)

Посредством простой диффузии через фосфолипидный бислой проникают низкомолекулярные гидрофобные органические вещества(жирные кислоты)

Билет№18

Особенности пассивного транспорта ионов. Проницаемость мембраны. Роль переносчиков и каналов в пассивном транспорте гидрофильных веществ через биологические мембраны. Строение и основные свойства мембранных каналов. Облегченная диффузия.

Электродиффузия-диффузия электрически заряженных частиц (ионов) под влиянием концептрационного и электрического градиентов. Липидный бислой непроницаем для ионов, они могут проникнуть только посредством специальных структур –ионных каналов,которые образованы интегральными белками.Движущей силой диффузии яв-ся не только разность конц. Ионов внутри и вне клетки,но так же разность ЭХ(электро-химического) потенциалов,создаваемых этими ионами по обе стороны мембраны=>диффузный поток ионов определ-ся градиентом ЭХ потенциала. ЭХ потенциал опрелеляет свободную энергию иона и учитывает все силы, способные побудить ион в движению Для растворенного вещества:μ = μ0 + R*T*lnC + z*F*φ

где μ0 - Стандартный химический потенциал, зависящий от природы растворителя.

С - концентрация вещества R - газовая постоянная T - температура z - валентность иона F - число Фарадея φ - электрический потенциал

Зав-ть плотность потока ионов от ЭХ потенц. Определяется ур-ем Теорелла U-подвижность ионов,dµ/dx-ЭХ градиент.Подставляя выражение для ЭХ потенциала в ур-е Теорелла,можно получить урНерист-Планка с учетом 2х grad С, которые обуславливают диффузию ионов. ϳ=D dc/dx-uƶFCdȹ/dx

Ионный канал – это интегральный белок или белковый комплекс, встроенный в клеточную мембрану. При прохождении канала, ион испытывает на себе действие электрических полей, создаваемых зарядами, находящимися на внутренней стороне канала.

Ионные каналы мембраны представляют собой интегральные белки мембраны,которые обр-ют отверстие в мембране,заполненных водой. В плазмолемме обнаружен ряд ионных каналов, которые х-ются высокой спецефичностью,допускающих перемещение протока одного вида ионов.Существуют Na,Cl каналы,каждый из них имеет селективный фильтры,который способен пропускать только определенные ионы.Проницаемость ионных каналов может измениться благодаря наличию-ворот определенных групп атомов в составе белков,форм канал. Конформационные изм-ния ворот при изменении ЭХпотенциала или действием спецефических химических в-ввыполняющих сигнальную функцию.

Облегченная диффузия гидроф молекул.Крупные гидрофильные молекулы (сахара, аминокислоты)перемещаются через мембр. с помощью переносчиков.Этот тип транспорта яв-ся диффузией,поскольку транспорт в-ва перемещается по gradС без доп энергии.Другой особенностью облегченной диффузии яв-ся Феномен насыщения. Поток вещ-ва,транспортируемого путем для диффузии, растет в зависимости от gradC в-ва только до определенной величины.Затем возрастание потока прекращается, поскольку транспортная система полностью занята.Кинетику обл.диффузии отображает управление Михаэлиса Ментена. ϳ=ϳ_max C_e/(C_e+K_m) КМ-константа Михаэлиса равна конц-ции в-ва вне плотности потока равна половине максимальной.

К особенностям облегченной диффузии можно отнести следующее:

1) перенос вещества с участием переносчика происходит значительно быстрее;

2) облегченная диффузия обладает свойством насыщения: при увеличении концентрации с одной стороны мембраны плотность потока вещества возрастает лишь до некоторого предела, когда все молекулы переносчика уже заняты;

3) при облегченной диффузии наблюдается конкуренция переносимых веществ в тех случаях, когда переносчиком переносятся разные вещества; при этом одни вещества переносятся лучше, чем другие, и добавление одних веществ затрудняет транспорт других; так, из сахаров глюкоза переносится лучше, чем фруктоза, фруктоза лучше, чем ксилоза, а ксилоза лучше, чем арабиноза и т.д.;

4) есть вещества, блокирующие облегченную диффузию – они образуют прочный комплекс с молекулами переносчика, например, флоридзин подавляет транспорт сахаров через биологическую мембрану.

Уравнение Фика

В большинстве практических случаев вместо химического потенциала применяется концентрация C. Прямая замена µ на C становится некорректной в случае больших концентраций, так как химический потенциал связан с концентрацией по логарифмическому закону. Если не рассматривать такие случаи, то выше приведённую формулу можно заменить на следующую:

которая показывает, что плотность потока вещества J пропорциональна коэффициенту диффузии D и градиенту концентрации. Это уравнение выражает первый закон Фика (Адольф Фик -- немецкий физиолог, установивший законы диффузии в 1855 г.). Второй закон Фика связывает пространственное и временное изменения концентрации (уравнение диффузии):

Коэффициент диффузии D зависит от температуры. В ряде случаев в широком интервале температур эта зависимость представляет собой уравнение Аррениуса.

Процессы диффузии имеют большое значение в природе:

Питание, дыхание животных и растений;

Проникновение кислорода из крови в ткани человека.

Пассивный транспорт

Пассивный транспорт - это перенос веществ из мест с большим значением электрохимического потенциала к местам с его меньшим значением.

При опытах с искусственными липидными бислоями было установлено, что чем меньше молекула и чем меньше она образует водородных связей, тем быстрее она дифундирует через мембрану. Итак, чем меньше молекула и чем более она жирорастворима (гидрофобна или неполярна), тем быстрее она будет проникать через мембрану. Диффузия веществ через липидный бислой вызывается градиентом концентрации в мембране. Через липидные и белковые поры сквозь мембрану проникают молекулы нерастворимых в липидах веществ и водорастворимые гидратированные ионы (окруженные молекулами воды). Малые неполярные молекулы легко растворимы и быстро диффундируют. Незаряженные полярные молекулы при небольших размерах также растворимы и диффундируют.

Важно, что вода очень быстро проникает через липидный бислой несмотря на то, что она относительно нерастворима в жирах. Это происходит из-за того, что ее молекула мала и электрически нейтральна.

Осмос - преимущественное движение молекул воды через полупроницаемые мембраны (непроницаемые для растворенного вещества и проницаемые для воды) из мест с меньшей концентрацией растворенного вещества в места с большей концентрацией. Осмос - по сути дела, простая диффузия воды из мест с ее большей концентрацией, в места с меньшей концентрацией воды. Осмос играет большую роль во многих биологических явлениях. Явление осмоса обусловливает гемолиз эритроцитов в гипотонических растворах.

Итак, мембраны могут пропускать воду и неполярные молекулы за счет простой диффузии.

Отличия облегченной диффузии от простой

  • 1) перенос вещества с участием переносчика происходит значительно быстрее;
  • 2) облегченная диффузия обладает свойством насыщения: при увеличении концентрации с одной стороны мембраны плотность потока вещества возрастает лишь до некоторого предела, когда все молекулы переносчика уже заняты;
  • 3) при облегченной диффузии наблюдается конкуренция переносимых веществ в тех случаях, когда переносчиком переносятся разные вещества; при этом одни вещества переносятся лучше, чем другие, и добавление одних веществ затрудняет транспорт других; так из сахаров глюкоза переносится лучше, чем фруктоза, фруктоза лучше, чем ксилоза, а ксилоза лучше, чем арабиноза и. т. д.;
  • 4) есть вещества, блокирующие облегченную диффузию - они образуют прочный комплекс с молекулами переносчика, например, флоридзин подавляет транспорт сахаров через биологическую мембрану.