Электронный микроскоп и клетка

Все знают что бактерии были открыты с помощью микроскопа. Но далеко не всем известно, что наблюдать за ними не так-то просто. Все дело в том, что хотя и все живые объекты микромира не видны невооруженным глазом, но тем не менее имеют очень разные размеры. Так, размеры инфузории-туфельки составляют от одной десятой до полумиллиметра (0.3 мм в среднем). Размеры сувойки - 0.2 миллиметра. А вот бактерии обычно имеют размеры порядка 2-3 микрометров. Миллиметр составляет одну тысячную часть от метра, а микрометр всего лишь одну миллионную. Путем простых расчетов нетрудно убедиться, что типичная бактерия в 100 раз меньше инфузории. Потому-то они и не были видимы в первые микроскопы, имевшие небольшое увеличение порядка 30-40 кратного. Поистине инфузория, если бы она была слоном, увидела бы бактерий как мышей, бегающих вокруг нее. Не случайно многие бактерии, такие как сенная палочка, служат для нее кормом.

Даже самые крупные бактерии из доступных для широкого наблюдения (такие как селеномонады, обитающие во рту человека и животных), потребовали от их первооткрывателя Антони ван Левенгука создания микроскопа с 500-кратным увеличением. Вообще крупные бактерии являются скорее исключением: встречаются в морских глубинах или в навозе (который не каждый захочет приготавливать как препарат самостоятельно). Типичные же бактерии не только требуют 1000 и даже 1200-кратного увеличения (что само по себе близко к максимальной разрешающей способности оптического микроскопа), но и почти прозрачны, соответственно не видны без специального окрашивания. Мельчайшие бактерии, такие как многие грамоотрицательные палочки, имеют размеры всего лишь 0,2 микрометра, то есть еще в 10 раз мельче «средних» по размеру видов, и для детального изучения требуют уже дорогостоящего электронного микроскопа.

Но не стоит огорчаться - ведь для настоящего естествоиспытателя, пусть даже и любителя, сложности только подстегивают интерес к изучаемому предмету. Для начала нужно определиться с моделью микроскопа. Совсем дешевые модели, даже декларирующие 640-кратное увеличение, не подойдут. Выбирайте прибор с 1000 или более кратным увеличением. Конденсер микроскопа обязательно должен иметь ирисовую диафрагму, и давать минимум хроматических искажений, объективы также должны быть ахроматичесие. Ведь чем больше увеличение, тем важнее отсутствие частотных отклонений в световом потоке. Кроме того, при столь большом увеличении (а значит и высокой апертуре) в объектив попадает совсем мало света, соответственно источник освещения должен быть очень мощным. Причем в данном случае мощный свет не вреден для глаз, а совсем наоборот - слабый источник создаст слишком тусклое освещение в окуляре прибора, что вредно при длительных наблюдениях.

Но и это еще не все. При столь высоких коэффициентах увеличения, близких к максимальным для оптических приборов, при «сухом» наблюдении начинают сказываться аберрации, вносимые воздухом, находящимся между покровным стеклом и фронтальной линзой объектива. Ведь воздух имеет совершенно иной коэффициент преломления, сильно отличающийся от показателей преломления стекла. Из-за этого падает значение апертуры объектива, и теряется его максимальная полезная разрешающая способность. Не так-то сложно сделать объектив с 1000-2000 кратным увеличением, но если при этом невозможно будет увидеть четких границ изучаемого объекта, а лишь только смутные и бесформенные пятна, в нем не будет смысла.

По этой причине исследователи уже начиная с 17-го века начали использовать так называемые иммерсионные объективы, производя наблюдение в жидкой среде, как будто бы микроскоп был погружен в дистиллированную воду или в масло. Их оптические характеристики спроектированы таким образом, чтобы давать максимально возможное значение апертуры при условии нахождения жидкости (отсутствия воздуха) между фронтальной линзой объектива и покровным стеклом. Естественно что при этом сама линза объектива максимально приближена к изучаемому объекту. Сначала использовалась вода, но ее коэффициент преломления все-таки существенно ниже «стеклянного». Наилучших результатов полезного разрешения для своего времени (XIX век) удалось добиться выдающемуся немецкому инженеру Эрнсту Аббе, догадавшемуся использовать сосновую смолу, имеющую существенно более близкий коэффициент преломления. А английский ученый Роберт Толл смог подобрать наилучший вариант иммерсионного масла - смолу бальзамической пихты, или так называемый канадский бальзам. Все эти усовершенствования, вкупе с ростом качества самих объективов и конденсером Аббе, позволили отцу-основателю современной батериологии Роберту Коху открыть такие патогенные бактерии как возбудители сибирской язвы, холеры и туберкулеза. А ведь размеры холерного вибриона составляют всего 1,5 на 0,3 мкм!

В настоящее время уже чаще используют синтетическое иммерсионное масло, так как оно не теряет со временем своих характеристик, не высыхает так быстро как натуральное. Ведь при затвердении показатели преломления меняются, а со временем можно повредить и сам дорогостоящий иммерсионный объектив. Тут необходимо добавить, что при работе с иммерсионными объективами ни в коем случае нельзя использовать покровные стекла, имеющие толщину больше чем 0,17 мм во избежание повреждения фронтальной линзы объектива. К счастью, предметные и покровные стекла, которые Вы можете приобрести в нашем магазине, как раз рассчитаны на такую толщину. Естественно что все манипуляции нужно выполнять в одноразовых лабораторных перчатках, а предметное стекло должно быть максимально сухим, чистым и нежирным.

Фиксацию препарата с целью предотвращения его быстрого распада и уменьшения токсичности в домашних или школьных условиях лучше всего производить путем нагрева. Для этого предметное стекло с мазком препарата берут с помощью пинцета ориентируя препаратом вверх и плавным движением проводят 2-3 раза над пламенем горелки, например газовой плиты. Также возможна химическая фиксация с помощью метилового спирта и ацетона, однако этот способ требует большей аккуратности и осторожности. После чего производится окрашивание изучаемого образца.

Как уже было сказано выше, бактерии не только имеют очень малый размер но и почти бесцветны. По этой причине зафиксированный мазок бактериального материала на предметном стекле требует предварительного окрашивания. Существует масса различных как одноэтапных, так и многоэтпаных способов раскрашивания подобных препаратов. Многие из них, такие как используемая в лабораториях всего мира окраска по Граму, требуют для своего освещения отдельной статьи. Мы расскажем лишь о простых способах окраски объектов, доступных в домашних или школьных условиях.

Его нужно производить самыми малыми каплями жидкости, поэтому выполняется окрашивание не вручную а с помощью медицинской пипетки. Например можно воспользоваться каплей обычных чернил, таких какие использовались раньше для письма перьевыми ручками. Среди одноэтапных красителей, несложных в использовании, также можно порекомендовать люголь и бриллиантовый зеленый, если удастся найти то метиловый фиолетовый (первичный краситель по Граму).

Естественно, что после прикрытия препарата покровным стеклом, нужно капнуть на него каплю иммерсионного масла, прилагаемого в комплекте поставки устройства. После чего установить препарат на предметный столик, повернуть револьверное устройство в положение, когда над препаратом располагается иммерсионный объектив, и приблизить его с помощью ручки на корпусе микроскопа так, чтобы фронтальная линза непосредственно контактировала с иммерсионным маслом, создавая безвоздушную среду для наблюдений.

Какие бактерии не самых мелких размеров можно вырастить (или культивировать, как это называется на языке микробиологов) проще всего? Любители обычно выращивают инфузорий туфелек и их живую пищу - сенных палочек в так называемом сенном настое. Сенная палочка - настоящая бактерия, служит кормом для этих инфузорий. Как же приготовить сенный настой? В этом нет ничего сложного. На один литр воды нужно 10 грамм сена (желательно бобовых культур, но не обязательно). Воду с сеном кипятат в течение 20 минут, затем фильтруют и разбавляют в пропорции 1:1 или 2:3 отстоянной остывшей водой. Большинство микроорганизмов погибает во время кипячения, но споры сенной палочки выживают. Через пару дней в растворе споры порождают сенные палочки. Из них и можно сделать мазок для изучения под покровным стеклом.

Сенная палочка является не только прекрасным источником микроэлементов для кормовых животных (таких как телята) но и помогает растениям бороться со многими болезнями.

Если у Вас нет отвращения (качество неприемлимое для настоящего биолога), то можно приготовить и навозный настой, но соблюдая при этом максимальную осторожность.

После окончания работ не забудьте почистить иммерсионный объектив микроскопа с помощью фланелевой тряпочки. Не используйте старое загустевшее масло во избежение повреждения объектива. Если же все-таки по недосмотру иммерсионное масло слишком загустеет, объектив необходимо вывернуть и тщательно почистить с помощью ватной палочки, смоченной в спиртовом растворе для чистки объективов.

Школьный курс по биологии можно сделать значительно интересней и лучше запоминающимся, если использовать наглядные демонстрационные материалы. Что такое биология? Это наука о живой природе и об окружающем нас мире в целом. Следовательно, это огромная по своим масштабам сфера для исследований, ведь можно изучать строение и функции различных клеток, тканей, органов и целого организма, химическую структуру клеток, передачу наследственной информации, размножение и деление клеток и т.д. И одно дело все эти знания получать из учебников, и совсем другое - увидеть что-то собственными глазами в микроскоп.

Для школьников наилучшим выбором микроскопа будут модели , или . Они просты в использовании, не требуют специальных знаний и умений, и способны обеспечить достаточное увеличение - от 40 до 640-800 крат, которого вполне хватит для изучения растительных и животных клеток, образцов с кровью и многого другого.

В целом же, микроскоп для школьника должен обладать следующими характеристиками:

  • Стеклянная оптика. Без этой характеристики не удастся получить качественное изображение, особенно на больших увеличениях.
  • Верхняя и нижняя подсветка. Верхний свет пригодится для работы с непрозрачными образцами, а нижний, наиболее часто используемый, нужен для исследований прозрачных, полупрозрачных и пленчатых образцов.
  • Осветительные элементы. Лучше, если это будет светодиоды или галогеновая лампа. Они очень мало нагревают рабочий столик, имеют длительный срок службы и обеспечивают естественную цветопередачу.
  • Фокусировка. Более серьезные модели микроскопов имеют два вида фокусировки - грубую и тонкую. На практике, ребенок будет в основном пользоваться грубой фокусировкой на объект, поэтому наличии только одного вида регулировки резкости не является препятствием для полноценного изучения образца.
  • Корпус микроскопа. Он должен быть металлическим. Это обеспечит прочность конструкции и длительный срок службы микроскопа.
  • Питание микроскопа. Удобно, когда микроскоп можно использовать не только в домашних, но и в полевых условиях. Поэтому стоит обратить внимание на источники питания микроскопа. Довольно часто их два вида - от сети переменного тока и от батареек.

Микроскоп для курса "Биология" в домашних условиях.

Приведем пример самого простого использования микроскопа в домашних условиях для биологических целей. Первое, с чем начинают знакомиться школьники на уроках ботаники - строение растений. Главной составляющей всех растений является клетка, которую школьники зачастую изучают на примере лука.

Обычно готовят два препарата - окрашенный и неокрашенный. Для этого необходимо отсоединить от лука одну мясистую чешуйку и снять с ее внутренней стороны кожицу. Эту кожицу кладут на предметное стекло, сверху наносят 1-2 капли воды и накрывают образец покровным стеклом. Излишки воды убирают с помощью фильтровальной бумаги.

Окрашенный препарат готовится аналогичным способом, но вместо чистой воды на предметное стекло наносят смесь йода с водой. Йодный раствор проникает вглубь клетки и делает доступными для изучения прозрачные структуры лука.

Далее оба препарат изучают на разных увеличениях, но наилучшим будет среднее и большое увеличение. В неокрашенном препарате можно рассмотреть только внешнее строение клетки, ее стенки, а внутренние структуры остаются невидимыми. В окрашенном препарате, напротив, можно рассмотреть внутреннее устройство клетки - цитоплазму, которая приобрела светло-коричневый оттенок, крупное ядро и плавающее в нем красное ядрышко. На самом большом увеличении становятся заметными межклеточные поры - узкие коридоры для равномерного распределения между клетками воды и питательных веществ.

Также на самом большом увеличении можно заметить, что цитоплазма в клетках на самом деле расположена по краям клеточной оболочки, а центральная часть клетки так и осталась прозрачной (в нее не проник раствор йода) и разделена перегородками. Пространство между перегородками называют вакуолям, здесь хранятся питательные вещества и вода, необходимые для роста растения. Да и сама цитоплазма на большом увеличении не выглядит однородной. Ее структура имеет зернистость, которая обеспечивается за счет содержащихся в ней органелл. Именно благодаря им клетки кожицы лука имеют своеобразный рисунок при микроскопии.

Что еще можно изучить при помощи обычного лука? Например, плазмолиз и деплазмолиз, два взаимосвязанных процесса. Плазмолиз это процесс отделения цитоплазмы от стенки клетки и «съеживания» самой клетки. Деплазмолиз является обратным процессом, когда восстанавливается прежняя форма и упругость клеток. Фактически, такой опыт может наглядно показать ребенку, как происходит гибель клетки от обезвоживания и ее восстановление. Однако не все клетки имеют обратимый плазмолиз. Он возможен только в клетках с плотной клеточной стенкой, например, у растений, грибов, крупных бактерий. А вот стенки животных клеток не имеют необходимой плотности, поэтому при потере большого количества жидкости они сжимаются, а некоторые из них погибают

Для проведения опыта с плазмолизом и деплазмолизом нужно приготовить неокрашенный препарат из кожицы лука, такой же, как для изучения строение растительной клетки. Однако вместо обычной воды на предметное стекло наносят солевой раствор. Для восстановления формы клетки нужно под покровное стекло капнуть несколько капель чая - черного, зеленого или травяного. Все они по своим характеристикам похожи на гипотонический раствор, который изредка используют в медицинских целях. В нем содержится малое количество солей, поэтому он легче проникает внутрь клетки и восстанавливает ее форму.

Под микроскопом изучать можно огромное количество препаратов и самое приятное, что большую часть из них можно приготовить самостоятельно. Очень увлекательно рассматривать в микроскоп клетки томата, картофеля, груши, песок, специи, цветочную пыльцу, насекомых. Фактически все, что душа пожелает можно положить на предметный столик микроскопа, главное - подобрать правильное освещение и самое подходящее увеличение. А все остальное придет с опытом!

Представляет собой превосходную оптическую систему. С его помощью мы видим отдаленные миллионами километров планеты и звезды; можем рассмотреть мельчайшие частички пыли, пляшущие в воздухе в луче света. Однако во многих случаях, когда надо глубже разобраться в строении изучаемых предметов, глаз начинает изменять нам. Тогда на помощь приходят оптические приборы. С момента, когда живший в семнадцатом веке голландский торговец сукном Левенгук дополнил глаз набором увеличительных стекол своего примитивного , и до сегодняшнего дня ученые и изобретатели трудятся над изготовлением приборов, позволяющих глубже заглянуть в мир мельчайших частиц. Долгое время все усилия были направлены на совершенствование оптических приборов.

С помощью современного светового микроскопа можно получить изображение объекта, увеличенного до двух тысяч раз. Можно сделать микроскоп, дающий и значительно большие увеличения. Но при этом выигрыша в выявлении новых деталей мы не получим, так как это - чисто масштабное увеличение, а не полезное. Предел полезного увеличения был достигнут для светового микроскопа еще в конце 19-го столетия. Он определяется так называемым разрешаемым расстоянием, то есть расстоянием между двумя наиболее близко расположенными точками, видимыми раздельно. Обычно пользуются обратным отношением этой величины, называемой разрешающей способностью. У современных микроскопов разрешаемое расстояние зависит от длины волны света и не может быть менее 0,15-0,2 микрона или 1 500-2 000 ангстрем. Это составляет примерно половину длины волны света. Чтобы убедится в этом можете попробовать сами купить микроскоп мпб 2 .

Единственный путь дальнейшего увеличения разрешающей способности микроскопа - уменьшить длину волны излучения, применяемого для получения изображения. Как известно, световой спектр представляет гамму различных длин волн; самая короткая - у фиолетовой и ультрафиолетовой части. Поэтому, используя в микроскопе особые лампы с ультрафиолетовым излучением, возможно несколько улучшить разрешение.

Еще более выгодно было бы использовать лучи Рентгена, длина волны которых во много раз меньше. Теоретически с помощью «рентгеновского микроскопа» можно было бы рассматривать молекулы и даже атомы. К сожалению, разрешение созданных моделей таких микроскопов пока не больше, чем у светового. Выход из создавшегося тупика был найден в другой области.

В 100 ТЫСЯЧ РАЗ МЕНЬШЕ

Еще во второй половине девятнадцатого века были построены приборы, послужившие в дальнейшем прообразом современных телевизоров и электронных микроскопов. Принцип их работы один: лоток электронов вызывает свечение люминофоров. На экране в месте, куда ударяет поток электронов, появляется яркая точка. В такого рода трубках удавалось получать даже своеобразные картинки, правда, скорее ради курьеза.

В 1924 году французский физик де Бройль обнаружил интересную особенность быстро летящих в вакууме электродов. Оказалось, что они обладают волновыми свойствами с длиной волны значительно меньшей, чем у лучей света. При этом длина волны зависит от скорости, а скорость движения электронов, как было давно известно, увеличивается при увеличении разности потенциалов между электродами. Немедленно встал вопрос о возможности применения потока электронов для получения изображения в микроскопе. Это было весьма соблазнительно, так как длина волны электронов меньше длины волны света примерно в 100 тысяч раз. Соответственно во столько же раз можно было бы увеличить разрешающую способность микроскопа.

Применить для такого микроскопа обычные, стеклянный линзы оказалось невозможным. Однако в связи с тем, что законы движения электронов в электрическом и магнитном поле до известной степени аналогичны закону преломления световой оптики, удалось создать магнитные поля такой формы, в которых пучок электронов ведет себя подобно пучку света, проходящему сквозь стеклянную линзу. Выходя из какой-то точки, они собираются вновь в другой точке или в фокусе. Такая линза дает возможность получить электронно-микроскопическое изображение объекта. На этом принципе и построен электронный микроскоп.

ВТОРЖЕНИЕ В ОБЛАСТЬ НЕВЕДОМОГО

Первые электронные микроскопы были построены к началу тридцатых годов, через несколько лет после открытия де Бройля, и очень быстро нашли широкое применение во всем мире.

К моменту создания электронного микроскопа в биологии, особенно в цитологии - науке, занимающейся изучением строения и функции , наметился своеобразный разрыв. С помощью светового микроскопа можно было наблюдать и изучать то, что лежит в пределах 1000-2000 ангстрем. В то же время широко развернувшиеся работы биохимиков и биофизиков позволили заглянуть в мир молекул - частиц размеров менее-10-15 ангстрем. Средняя же область - между микроскопической цитологией и макромолекулярной химией - оставалась совершенно неизведанной.

Возникал вопрос: не таятся ли здесь новые структуры, имеющие определенную организацию? Изучить их особенно важно потому, что они связаны с характером макромолекул белков, нуклеиновых кислот и жиров, то есть веществ, от которых зависит большинство процессов, протекающих в клетках. На этом же макромолекулярном уровне возникают и первичные изменения при многих заболеваниях. Здесь таится разгадка многих неясных до настоящего времени болезней. Открыть эту неведомую область предстояло электронным микроскопистам.

ПЕРВЫЙ ЭТАП - НАКОПЛЕНИЕ ФАКТОВ

Изучение цитологических структур - элементов клетки - с помощью электронного микроскопа только начинается. Как во всякой развивающейся науке, этап подготовки методов исследования сменился периодом накопления фактов. Клетки растений и животных, и , одноклеточные организмы в новом свете предстают перед учеными. Еще и сейчас многие органы и ткани почти совершенно не описаны и ждут своего исследователя.

Основным методом изучения внутреннего строения клеток и тканей в электроном микроскопе, так же как и в световом, является просмотр их «в проходящем свете». Только так удается выявить наиболее важные и интересные данные об их внутренней организации. Однако первые же опыты показали, что здесь исследователей ожидают большие трудности. Даже отдельные распластанные клетки настолько сильно поглощали электроны, что на экране большая их часть выглядела совершенно непрозрачной. Лишь по краям, в самых тонких участках, удавалось наблюдать отдельные клеточные структуры. Получение необычайно тонких, до 100 - 300 ангстрем толщиной, проницаемых для электронов срезов клеток - само по себе проблема! Она была решена.

Но возникли новые затруднения. Биологические объекты обычно имеют небольшую разницу в «электронной плотности» разных участков - обладают низким контрастом. Поэтому изображение даже сверхтонких срезов клетки оказывается нечетким. Контраст увеличивают искусственно, вводя в клетки вещества, задерживающие электроны. Для этой цели главным образом используются тяжелые металлы: золото, осмий, свинец, уран и т. д. Соединяясь с определенными веществами клетки, эти металлы выявляют их структуры, выполняя роль своеобразного «красителя».

Новую страну первым исследует географ. Он опишет озера, горы и низменности, протекающие там реки. На карте появятся леса, степи, даже ручьи. Но многое останется невыявленным. Страна лишь приоткрыла свои богатства. Нужно, чтобы вслед за географом прошли геологические партии, сделали глубокие шурфы и пробурили скважины. Тогда на карте возникнет россыпь полезных ископаемых, мимо которых, не заметив их, прошел географ, вооруженный лишь компасом и биноклем.

История исследования клетки в световом микроскопе насчитывает более ста лет. За это время были изучены и описаны разнообразные клеточные структуры, прослежены различные изменения клеток в процессе их деления и роста, перестройки в измененных болезнью тканях. Известно, что клетки окружены оболочкой, внутри которой заключена жидкая цитоплазма и центрально расположенное ядро. Известно, что в цитоплазме, кроме гомогенного (или основного) вещества, находятся различные включения, в числе которых имеются так называемые . К ним относятся, например, митохондрии.

Митохондрии встречаются почти во всех клетках, причем иногда в огромном количестве. Химики определили, что митохондрии содержат сложный состав ферментов и играют огромную роль во многих процессах клетки. Но вся эта «фабрика», вернее, «химический завод», в световом микроскопе выглядела более чем просто: в виде маленькой точки или, в лучшем случае, черной палочки. Как же там действует сложнейший комплекс ферментов? Где они размещаются?

Посмотрим на митохондрию в электронный микроскоп. Она уже не похожа на простое зернышко или палочку. Перед нами сложная система, состоящая из двойной оболочки, окружающей удлиненное тело; внутри правильными рядами расположены многочисленные, также двойные перегородки. Вещество, лежащее между перегородками, имеет определенные свойства, отличающие его от окружающей цитоплазмы. Более того: митохондрии у разных животных (и даже у одного организма, но в разных тканях) также различны. У некоторых насекомых, например, митохондрии округлой, а не вытянутой формы. Перегородки заменяются гребнями, то радиусам отходящими внутрь от оболочки; вместо пластинок-гребней могут быть трубочки, похожие на сильно вытянутые пальцы от резиновой перчатки.

Но во всех случаях внутренние перегородки, будь-то гребни или трубочки, построены из тонких (около 150 ангстрем) двойных пластинок - мембран. Такая общность строения объясняется тем, что роль митохондрии одинакова: осуществление определенных ферментных реакций.

При исследовании «вглубь» по-иному предстало и основное вещество цитоплазмы клеток. В световом микроскопе оно выглядело по-разному. Дело в том, что живая клетка при изучении обычно фиксируется - убивается. При этом внутреннее строение ее в той или иной степени нарушается: иногда становится бесструктурным, иногда грубозернистым, нередко заполняется массой пузырьков, так как происходит свертывание белков.

Совсем иную картину дает электронный микроскоп: перед нами целая сеть нитей, трубочек, пузырьков. Все они ограничены тончайшими (примерно такими же, как у митохондрий) мембранами, часто усеянными мелкими зернышками. Эти структуры, получившие название эргастоплазменной сети, впервые представ перед исследователями, вызвали массу споров. Многие не верили в их реальность: настолько это было ново и неожиданно. Сейчас дискуссии постепенно затихают. Такие сети обнаружены почти во всех клетках. Начинает проясняться их важная роль. Установлена связь эргастоплазменной сети с особыми участками клетки - базофильными структурами.

Связь осуществляется через мелкие зернышки, усеивающие мембраны эргастоплазмы. Эти зернышки содержат одно из важнейших веществ клетки - рибонуклеиновую кислоту, которая играет активную роль в синтезе белка. Действительно, наиболее значительное скопление эргастоплазменной сети обнаруживается как раз в тех клетках, которые вырабатывают белки (например, поджелудочная железа).


На электронно-микроскопической фотографии среди массы беспорядочно расположенных пузырьков и канальцев эргастоплазменной сети наше внимание обращают группы парных мембран, лежащих правильными рядами. Это хорошо знакомый исследователям сетчатый аппарат Гольджи, который связывают с жизнедеятельностью клетки и ее функциями выделения. Впервые он был описан еще в 1898 году. И, тем не менее, в каждом отдельном случае возникал вопрос, имеем ли мы дело с аппаратом Гольджи или сетью структур, сходных по окраске. Электронно-микроскопическое исследование сразу вносит полную ясность. На фото видны пакеты парных мембран, вокруг которых располагаются отдельные крупные пузырьки, или вакуоли, более мелкие многочисленные вакуоли лежат внутри самих пакетов между пластинами мембраны.

Поражает интересная закономерность: в аппарате Гольджи и в митохондриях, в эргастоплазменной сети и в клеточных оболочках - всюду электронный микроскоп выявляет мембраны, довольно сходные между собой по толщине и по плотности. В чем дело?

Объясняют это тем, что именно мембраны - очень удачная система, где при наименьшем объеме возможно наилучшее взаимодействие. Молекулы вещества лежат здесь почти в один слой с окружающей цитоплазмой, включаются практически одновременно в реакцию обмена веществ.

Продолжение следует.

Цитология возникла как ветвь микроанатомии, и поэтому одним из основных методов, который используют цитологи, - это метод световой микроскопии. В настоящее время этот метод нашел целый ряд дополнений и модификаций, что значительно расширило круг задач и вопросов, решаемых цитологией. Революционным моментом в развитии современной цитологии и биологии вообще было применение электронной микроскопии, открывшей необычайно широкие перспективы. С введением электронной микроскопии в ряде случаев уже трудно провести границу между собственно цитологией и биохимией, они объединяются на уровне макромолекулярного изучения объектов (например, микротрубочек, мембран, микрофиламентов и т.д.). Все же главным методическим приемом в цитологии остается визуальное наблюдение объекта. При этом исследователь не просто изучает и описывает морфологию объекта, он может видеть степень его сложности, локализовать отдельные детали, получить сведения о химизме той или иной части клетки, визуально и достаточно точно оценить ее метаболические свойства, выяснить строение этой части на макромолекулярном уровне. Это создает своеобразие цитологии как науки, использующей главным образом методы изучения клетки непосредственно глазом, вооруженным увеличивающими оптическими системами. Кроме того, в цитологии применяются многочисленные приемы препаративной и аналитической биохимии, методы биофизики.

Световая микроскопия

Световой микроскоп, главный прибор биологии, представляет собой оптическую систему, состоящую из конденсатора, объектива. Пучок света от источника освещения собирается в конденсаторе и направляется на объект (рис. 6). Пройдя через объект, лучи света попадают в систему линз объектива; они строят первичное изображение, которое увеличивается с помощью линз окуляра. Главная оптическая часть микроскопа, определяющая его основные возможности, - объектив. В современных микроскопах объективы сменные, что позволяет изучать клетки при разных увеличениях. Главной характеристикой микроскопа как оптической системы является разрешающая способность. Изображения, даваемые объективом, можно увеличить во много раз, применяя сильный окуляр или, например, путем проекции на экран (до 10 5 раз). Вычислено, что разрешающая способность объектива, т.е. минимальное расстояние между двумя точками, которые видны раздельно, будет равно

d = 0,61 -----------

где  - длина волны света, используемого для освещения объекта; n – коэффициент преломления среды;  - угол между оптической осью объектива и наиболее отклоняющимся лучом, попадающим в объектив. Разрешение микроскопа зависит от длины волны – чем она меньше, тем меньшего размера деталь мы можем увидеть, и от нумерической апертуры объектива (n sin ) – чем она выше, тем выше разрешение. Обычно в световых микроскопах используются источники освещения в видимой области спектра (400-700 нм), поэтому максимальное разрешение микроскопа в этом случае может быть не выше 200-350 нм (0,2-0,35 мкм). Если использовать ультрафиолетовый свет (260-280 нм), то можно повысить разрешение до 130-140 нм (0,13-0,14 мкм). Это будет пределом теоретического разрешения светового микроскопа, определяемого волновой природой света. Таким образом, все, что может дать световой микроскоп как вспомогательный прибор к нашему глазу, - это повысить разрешающую способность его примерно в 1000 раз (невооруженный глаз человека имеет разрешающую способность около 0,1 мм, что равно 100 мкм). Это и есть «полезное» увеличение микроскопа, выше которого мы будем только увеличивать контуры изображения, не открывая в нем новых деталей. Следовательно, при использовании видимой области света 0,2-0,3 мкм является конечным пределом разрешения светового микроскопа.

Но все же в световом микроскопе можно видеть частицы меньшей величины, чем 0,2 мкм. Это метод «темного поля», или, как его называли раньше, метод «ультрамикроскопии». Суть его в том, что подобно пылинкам в луче света (эффект Тиндаля) в клетке при боковом освещении светятся мельчайшие частицы (меньше 0,2 мкм), отраженный свет от которых попадает в объектив микроскопа. Этот метод успешно применяется при изучении живых клеток.

Если же необработанные живые или мертвые клетки рассматривать в проходящем свете, то в них различаются только крупные детали из-за того, что они обладают иным коэффициентом преломления и поглощения световых лучей, чем окружающая среда. Большая же часть клеточных компонентов мало отличается по этим свойствам как от среды (воды или тканевых растворов), так и друг от друга и поэтому мало заметны и не контрастны. Для их изучения приходится изменять освещенность (теряя при этом в четкости изображения) или применять особые методы и приборы. Один из таких приемов – метод фазово-контрастной микроскопии , широко использующийся для наблюдений за живыми клетками. Он основан на том, что отдельные участки прозрачной в общем клетки хоть мало, но все же отличаются друг от друга по плотности и по светопреломлению. Проходя через них, свет изменяет свою фазу, однако такое изменение фазы световой волны наш глаз не улавливает, так как он чувствителен только к изменению интенсивности света. Последняя зависит от величины амплитуды световой волны. В фазово-контрастном микроскопе в объектив вмонтирована специальная пластинка, проходя через которую луч света испытывает дополнительный сдвиг фазы колебаний. При построении изображения взаимодействуют уже лучи, находящиеся в одной фазе либо в противофазе, но обладающие разной амплитудой; тем самым создается светло-темное контрастное изображение объекта.

Сходный прием используется в интерференционном микроскопе . Он устроен так, что пучок параллельных световых лучей от осветителя разделяется на два потока. Один из них проходит через объект и приобретает изменения в фазе колебания, другой идет, минуя объект. В призмах объектива оба потока вновь соединяются и интерферируют между собой. В результате интерференции будет строиться изображение, на котором участки клетки, обладающие разной толщиной или разной плотностью, будут отличаться друг от друга по степени контрастности. В этом приборе, измеряя сдвиги фаз, можно определить концентрацию и массу сухого вещества в объекте.

С помощью поляризационного микроскопа изучают объекты, обладающие так называемой изотропией, т.е. упорядоченной ориентацией субмикроскопических частиц (например, волокна веретена деления, миофибриллы и др.). У такого микроскопа перед конденсором помещается поляризатор, который пропускает световые волны с определенной плоскостью поляризации. После препарата и объектива помещается анализатор, который может пропускать свет с этой же плоскостью поляризации. Поляризатор и анализатор – это призмы, сделанные из исландского шпата (призмы Николя). Если вторую призму (анализатор) повернуть затем на 90 о по отношению к первой, то свет проходить не будет. В том случае, когда между такими скрещенными призмами будет находиться объект, обладающий двойным лучепреломлением, т.е. способностью поляризовать свет, он будет виден как светящийся на темном поле. С помощью поляризационного микроскопа можно убедиться, например, в ориентированном расположении мицелл в клеточной стенке растений.