Означает рнк. Типы рнк. Соединение азотистых оснований

Цитоло́гия (греч. κύτος - «вместилище», здесь: «клетка» и λόγος - «учение», «наука») - раздел биологии , изучающий живые клетки , их органоиды , их строение, функционирование, процессы клеточного размножения, старения и смерти.

Также используются термины клеточная биология , биология клетки (англ. Cell Biology ).

Возникновение и развитие цитологии

Рисунок Роберта Гука, изображающий срез пробковой ткани под микроскопом (из книги «Микрография», 1664 год)

Термин «клетка» впервые употребил Роберт Гук в 1665 году , при описании своих «исследований строения пробки с помощью увеличительных линз». В 1674 году Антони ван Левенгук установил, что вещество, находящееся внутри клетки, определенным образом организовано. Он первым обнаружил клеточные ядра. На этом уровне представление о клетке просуществовало еще более 100 лет.

Изучение клетки ускорилось в 1830-х годах, когда появились усовершенствованные микроскопы . В 1838-1839 ботаник Маттиас Шлейден и анатом Теодор Шванн практически одновременно выдвинули идею клеточного строения организма. Т. Шванн предложил термин «клеточная теория » и представил эту теорию научному сообществу. Возникновение цитологии тесно связано с созданием клеточной теории - самого широкого и фундаментального из всех биологических обобщений. Согласно клеточной теории, все растения и животные состоят из сходных единиц - клеток, каждая из которых обладает всеми свойствами живого.

Важнейшим дополнением клеточной теории явилось утверждение знаменитого немецкого натуралиста Рудольфа Вирхова , что каждая клетка образуется в результате деления другой клетки.

В 1870-х годах были открыты два способа деления клетки эукариот, впоследствии названные митоз и мейоз . Уже через 10 лет после этого удалось установить главные для генетики особенности этих типов деления. Было установлено, что перед митозом происходит удвоение хромосом и их равномерное распределение между дочерними клетками, так что в дочерних клетках сохраняется прежнее число хромосом. Перед мейозом число хромосом также удваивается, но в первом (редукционном) делении к полюсам клетки расходятся двухроматидные хромосомы, так что формируются клетки с гаплоидным набором, число хромосом в них в два раза меньше, чем в материнской клетке. Было установлено, что число, форма и размеры хромосом - кариотип - одинаково во всех соматических клетках животных данного вида, а число хромосом в гаметах в два раза меньше. Впоследствии эти цитолоогические открытия легли в основу хромосомной теории наследственности .

Клиническая цитология

Клиническая цитология является разделом лабораторной диагностики и носит описательный характер. В частности, важным разделом клинической цитологии является онкоцитология, перед которой ставится задача диагностики новообразований.

Рибонуклеи́новая кисло́та (РНК ) - одна из трёх основных макромолекул (две другие - ДНК и белки ), которые содержатся в клетках всех живых организмов .

Так же, как ДНК (дезоксирибонуклеиновая кислота), РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом . Каждый нуклеотид состоит из азотистого основания , сахара рибозы и фосфатной группы . Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию . Все клеточные организмы используют РНК (мРНК ) для программирования синтеза белков.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией , то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами - РНК-полимеразами . Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией . Трансляция - это синтез белка на матрице мРНК при участии рибосом . Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Для одноцепочечных РНК характерны разнообразные пространственные структуры, в которых часть нуклеотидов одной и той же цепи спарены между собой. Некоторые высокоструктурированные РНК принимают участие в синтезе белка клетки, например, транспортные РНК служат для узнавания кодонов и доставки соответствующих аминокислот к месту синтеза белка, а рибосомные РНК служат структурной и каталитической основой рибосом.

Однако функции РНК в современных клетках не ограничиваются их ролью в трансляции. Так, малые ядерные РНК принимают участие в сплайсинге эукариотических матричных РНК и других процессах.

Помимо того, что молекулы РНК входят в состав некоторых ферментов (например, теломеразы ), у отдельных РНК обнаружена собственная ферментативная активность: способность вносить разрывы в другие молекулы РНК или, наоборот, «склеивать» два РНК-фрагмента. Такие РНК называются рибозимами .

Геномы ряда вирусов состоят из РНК, то есть у них она играет роль, которую у высших организмов выполняет ДНК. На основании разнообразия функций РНК в клетке была выдвинута гипотеза, согласно которой РНК - первая молекула, которая была способна к самовоспроизведению в добиологических системах.

Время, в которое мы живем, отмечено потрясающими переменами, огромным прогрессом, когда люди получают ответы на все новые и новые вопросы. Жизнь стремительно движется вперед, и то, что еще совсем недавно казалось невозможным, начинает претворяться в жизнь. Вполне возможно, что представляется сегодня сюжетом из жанра фантастики, скоро тоже приобретет черты реальности.

Одним из важнейших открытий во второй половине двадцатого столетия стали нуклеиновые кислоты РНК и ДНК, благодаря которым человек приблизился к разгадкам тайн природы.

Нуклеиновые кислоты

Нуклеиновые кислоты - это органические соединения, обладающие высокомолекулярными свойствами. В их состав входят водород, углерод, азот и фосфор.

Они были открыты в 1869 году Ф. Мишером, который исследовал гной. Однако тогда его открытию не придали особого значения. Лишь позже, когда эти кислоты обнаружили во всех животных и растительных клетках, пришло понимание огромной их роли.

Существуют два вида нуклеиновых кислот: РНК и ДНК (рибонуклеиновые и дезоксирибонуклеиновые кислоты). Настоящая статья посвящена рибонуклеиновой кислоте, но для общего понимания рассмотрим также, что собой представляет ДНК.

Что такое

ДНК — это состоящая из двух нитей, которые соединены по закону комплементарности водородными связями азотистых оснований. Длинные цепи закручены в спираль, один виток содержит почти десять нуклеотидов. Диаметр двойной спирали составляет два миллиметра, расстояние между нуклеотидами - около половины нанометра. Длина одной молекулы порой достигает нескольких сантиметров. Длина ДНК ядра человеческой клетки составляет почти два метра.

В структуре ДНК содержится вся ДНК обладает репликацией, что означает процесс, в ходе которого из одной молекулы образуются две совершенно одинаковые - дочерние.

Как уже было отмечено, цепь складывается из нуклеотидов, состоящих, в свою очередь, из азотистых оснований (аденина, гуанина, тимина и цитозина) и остатка кислоты фосфора. Все нуклеотиды различаются азотистыми основаниями. Водородная связь возникает не между всеми основаниями, аденин, к примеру, может соединяться только с тимином или гуанином. Таким образом, адениловых нуклеотидов в организме столько же, сколько тимидиловых, а число гуаниловых равно цитидиловым (правило Чаргаффа). Получается, что последовательность одной цепочки предопределяет последовательность другой, и цепи как бы зеркально отражают друг друга. Такая закономерность, где нуклеотиды двух цепей располагаются упорядоченно, а также соединяются избирательно, называется принципом комплементарности. Кроме водородных соединений, двойная спираль взаимодействует и гидрофобно.

Две цепи разнонаправлены, то есть расположены в противоположных направлениях. Поэтому напротив трех"-конца одной находится пяти"-конец другой цепи.

Внешне напоминает винтовую лестницу, перилом которой является сахарофосфатный остов, а ступеньками — комплементарные основания азота.

Что такое рибонуклеиновая кислота?

РНК — это нуклеиновая кислота с мономерами, называющимися рибонуклеотидами.

По химическим свойствам она очень похожа на ДНК, так как обе являются полимерами нуклеотидов, представляющих собой фосфолированный N-гликозид, который выстроен на остатке пентозы (пятиуглеродного сахара), с фосфатной группой пятого углеродного атома и основания азота при первом углеродном атоме.

Она представляет собой одну полинуклеотидную цепочку (кроме вирусов), которая намного короче, чем у ДНК.

Один мономер РНК — это остатки следующих веществ:

  • основания азота;
  • пятиуглеродного моносахарида;
  • кислоты фосфора.

РНК имеют пиримидиновые (урацил и цитозин) и пуриновые (аденин, гуанин) основания. Рибоза является моносахаридом нуклеотида РНК.

Отличия РНК и ДНК

Нуклеиновые кислоты отличаются друг от друга следующими свойствами:

  • количество ее в клетке зависит от физиологического состояния, возраста и органной принадлежности;
  • ДНК содержит углевод дезоксирибозу, а РНК — рибозу;
  • азотистое основание у ДНК — тимин, а у РНК — урацил;
  • классы выполняют различные функции, но синтезируются на матрице ДНК;
  • ДНК состоит из двойной спирали, а РНК — из одинарной цепи;
  • для нее нехарактерны действующие у ДНК;
  • в РНК больше минорных оснований;
  • цепи существенно отличаются по длине.

История изучения

Клетка РНК впервые была открыта биохимиком из Германии Р. Альтманом при исследовании дрожжевых клеток. В середине двадцатого века была доказана роль ДНК в генетике. Лишь тогда описали и типы РНК, функции и так далее. До 80-90% массы в клетке приходится на р-РНК, образующих совместно с белками рибосому и участвующих в биосинтезе белка.

В шестидесятых годах прошлого столетия впервые предположили, что должен существовать некий вид, который несет в себе генетическую информацию для синтеза белка. После этого научно установили, что есть такие информационные рибонуклеиновые кислоты, представляющие комплементарные копии генов. Их еще называют матричными РНК.

В декодировании записанной в них информации участвуют так называемые транспортные кислоты.

Позже стали разрабатываться способы выявления последовательности нуклеотидов и устанавливаться структура РНК в пространстве кислоты. Так было обнаружено, что некоторые из них, которые назвали рибозимами, могут расщеплять полирибонуклеотидные цепи. Вследствие этого стали предполагать, что в то время, когда зарождалась жизнь на планете, РНК действовала и без ДНК и белков. При этом все превращения производились с ее участием.

Строение молекулы рибонуклеиновой кислоты

Почти все РНК - это одиночные цепи полинуклеотидов, которые, в свою очередь, состоят из монорибонуклеотидов — пуриновых и пиримидиновых оснований.

Нуклеотиды обозначают начальными буквами оснований:

  • аденина (А), А;
  • гуанина (G), Г;
  • цитозина (С), Ц;
  • урацила (U), У.

Они связаны между собой трех- и пятифосфодиэфирными связями.

Самое разное количество нуклеотидов (от нескольких десятков до десятков тысяч) входит в строение РНК. Они могут формировать вторичную структуру, состоящую в основном из коротких двуцепочных тяжей, которые образовались комплементарными основаниями.

Структура молекулы рибнуклеиновой кислоты

Как уже было сказано, у молекулы имеется однонитевое строение. РНК получает вторичную структуру и форму в результате взаимодействия нуклеотидов между собой. Это полимер, мономером которого является нуклеотид, состоящий из сахара, остатка кислоты фосфора и основания азота. Внешне молекула похожа на одну из цепей ДНК. Нуклеотиды аденин и гуанин, входящие в состав РНК, относятся к пуриновым. Цитозин и урацил являются пиримидиновыми основаниями.

Процесс синтеза

Чтобы молекула РНК синтезировалась, матрицей является молекула ДНК. Бывает, правда, и обратный процесс, когда новые молекулы дезоксирибонуклеиновой кислоты образуются на матрице рибонуклеиновой. Такое встречается при репликации некоторых видов вирусов.

Основой для биосинтеза могут служить также другие молекулы рибонуклеиновой кислоты. В ее транскрипции, которая происходит в ядре клетки, участвуют много ферментов, но самым значимым из них является РНК-полимераза.

Виды

В зависимости от вида РНК, функции ее также отличаются. Существуют несколько видов:

  • информационная и-РНК;
  • рибосомальная р-РНК;
  • транспортная т-РНК;
  • минорная;
  • рибозимы;
  • вирусные.

Информационная рибонуклеиновая кислота

Такие молекулы еще называют матричными. Они составляют в клетке примерно два процента от всего количества. В клетках эукариот они синтезируются в ядрах на ДНК-матрицах, переходя затем в цитоплазму и связываясь с рибосомами. Далее, они становятся матрицами для синтеза белка: к ним присоединяются транспортные РНК, которые несут аминокислоты. Так происходит процесс преобразования информации, которая реализуется в уникальной структуре белка. В некоторых вирусных РНК она к тому же является хромосомой.

Жакоб и Мано являются открывателями этого вида. Не имея жесткой структуры, ее цепь образует изогнутые петли. Не работая, и-РНК собирается в складки и сворачивается в клубок, а в рабочем состоянии разворачивается.

и-РНК несет в себе информацию о последовательности аминокислот в белке, который синтезируется. Каждая аминокислота закодирована в определенном месте при помощи генетических кодов, которым свойственны:

  • триплетность — из четырех мононуклеотидов возможно выстроить шестьдесят четыре кодона (генетического кода);
  • неперекрещиваемость — информация движется в одном направлении;
  • непрерывность — принцип работы сводится к тому, что одна и-РНК — один белок;
  • универсальность — тот или иной вид аминокислоты кодируется у всех живых организмов одинаково;
  • вырожденность — известными являются двадцать аминокислот, а кодонов — шестьдесят один, то есть они кодируются несколькими генетическими кодами.

Рибосомальная рибонуклеиновая кислота

Такие молекулы составляют подавляющее большинство клеточных РНК, а именно от восьмидесяти до девяноста процентов от общего количества. Они соединяются с белками и формируют рибосомы — это органоиды, выполняющие синтез белков.

Рибосомы состоят на шестьдесят пять процентов из р-РНК и на тридцать пять процентов из белка. Эта полинуклеотидная цепь без труда изгибается вместе с белком.

Рибосома состоит из аминокислотного и пептидного участков. Они расположены на контактирующих поверхностях.

Рибосомы свободно передвигаются нужных местах. Они не очень специфичны и могут не только считывать информацию с и-РНК, но и образовывать с ними матрицу.

Транспортная рибонуклеиновая кислота

т-РНК наиболее изучены. Они составляют десять процентов клеточной рибонуклеиновой кислоты. Эти виды РНК связываются с аминокислотами благодаря специальному ферменту и доставляются на рибосомы. При этом аминокислоты переносятся транспортными молекулами. Однако бывает, что аминокислоту кодируют разные кодоны. Тогда переносить их будут несколько транспортных РНК.

Она сворачивается в клубочек, когда неактивна, а функционируя, имеет вид клеверного листа.

В ней различаются следующие участки:

  • акцепторный стебель, имеющий последовательность нуклеотидов АЦЦ;
  • участок, служащий для присоединения к рибосоме;
  • антикодон, кодирующий аминокислоту, которая присоединена к этой т-РНК.

Минорный вид рибонуклеиновой кислоты

Недавно виды РНК пополнились новым классом, так называемыми малыми РНК. Они, скорее всего, являются универсальными регуляторами, которые включают или выключают гены в эмбриональном развитии, а также контролируют процессы внутри клеток.

Рибозимы также недавно выявлены, они активно принимают участие, когда кислота РНК ферментируется, являясь при этом катализатором.

Вирусные виды кислот

Вирус способен содержать либо рибонуклеиновую кислоту, либо дезоксирибонуклеиновую. Поэтому с соответствующими молекулами они называются РНК-содержащими. При попадании в клетку такого вируса происходит обратная транскрипция — на базе рибонуклеиновой кислоты появляются новые ДНК, которые встраиваются в клетки, обеспечивая существование и размножение вируса. В другом случае происходит образование комплиментарной на поступившей РНК. Вирусы белков, жизнедеятельность и размножение идет без ДНК, а лишь на основе информации, содержащейся в РНК вируса.

Репликация

В целях улучшения общего понимания необходимо рассмотреть процесс репликации, в результате которого появляются две идентичные молекулы нуклеиновой кислоты. Так начинается деление клетки.

В ней участвуют ДНК-полимеразы, ДНК-зависимые, РНК-полимеразы и ДНК-лигазы.

Процесс репликации состоит из следующих этапов:

  • деспирализация — происходит последовательное раскручивание материнской ДНК, захватывающей всю молекулу;
  • разрыв водородных связей, при котором цепи расходятся, и появляется репликативная вилка;
  • подстройка дНТФ к освободившимся основаниям материнских цепей;
  • отщепление пирофосфатов от дНТФ молекул и образование фосфорнодиэфирных связей за счет выделяющейся энергии;
  • респирализация.

После образования дочерней молекулы делится ядро, цитоплазма и остальное. Таким образом, образуются две дочерние клетки, полностью получившие всю генетическую информацию.

Кроме этого, кодируется первичная структура белков, которые в клетке синтезируются. ДНК в этом процессе принимает косвенное участие, а не прямое, заключающееся в том, что именно на ДНК происходит синтез, участвующих в образовании белков, РНК. Этот процесс получил название транскрипции.

Транскрипция

Синтез всех молекул происходит во время транскрипции, то есть переписывании генетической информации с определенного оперона ДНК. Процесс в некоторых моментах похож на репликацию, а в других существенно отличается от нее.

Сходствами являются следующие части:

  • начало идет с деспирализации ДНК;
  • происходит разрыв водородных связей между основаниями цепей;
  • к ним комплементарно подстраиваются НТФ;
  • происходит образование водородных связей.

Отличия от репликации:

  • при транскрипции расплетается лишь участок ДНК, соответствующий транскриптону, в то время как при репликации расплетению подвергается вся молекула;
  • при транскрипции подстраивающиеся НТФ содержат рибозу, и вместо тимина урацил;
  • информация списывается лишь с определенного участка;
  • после образования молекулы водородные связи и синтезированная цепь разрываются, а цепь соскальзывает с ДНК.

Для нормального функционирования первичная структура РНК должна состоять только из списанных с экзонов ДНК-участков.

У только что образованных РНК начинается процесс созревания. Молчащие участки вырезаются, а информативные сшиваются, образуя полинуклеотидную цепь. Далее, каждый вид имеет присущие только ему превращения.

В и-РНК происходит присоединение к начальному концу. К конечному участку присоединяется полиаденилат.

В т-РНК модифицируются основания, образуя минорные виды.

У р-РНК также метилируются отдельные основания.

Защищают от разрушения и улучшают транспортировку в цитоплазму белки. РНК в зрелом состоянии с ними соединяются.

Значение дезоксирибонуклеиновых и рибонуклеиновых кислот

Нуклеиновые кислоты имеют огромное значение в жизнедеятельности организмов. В них хранится, переносится в цитоплазму и передается по наследству дочерним клеткам информация о белках, синтезирующихся в каждой клетке. Они присутствуют во всех живых организмах, стабильность этих кислот играет важнейшую роль для нормального функционирования как клеток, так и всего организма. Любые изменения в их строении приведут к клеточным изменениям.

Рибонуклеиновая кислота представляет собой сополимер пуриновых и пиримидиновых рибонуклеотидов, соединенных друг с другом, как и в ДНК, -фосфодиэфирными мостиками (рис. 37.6). Хотя эти два вида нуклеиновых кислот имеют много общего, по ряду признаков они отличаются друг от друга.

1. У РНК углеводным остатком, к которому присоединены пуриновые или пиримидиновые основания и фосфатные группы, является рибоза, а не 2-дезоксирибоза (как у ДНК).

2. Пиримидиновые компоненты РНК отличаются от таковых у ДНК. В состав РНК, как и в состав ДНК, входят нуклеотиды аденина, гуанина и цитозина. В то же время РНК (за исключением некоторых специальных случаев, на которых мы остановимся ниже) не содержит тимина, его место в молекуле РНК занимает урацил.

3. РНК - одноцепочечная молекула (в отличие от ДНК, имеющей двухцепочечную структуру), однако при наличии в цепи РНК участков с комплементарной последовательностью (противоположной полярности) единичная цепь РНК способна сворачиваться с образованием так называемых «шпилек», структур, имеющих двухспиральные характеристики (рис. 37.7).

Рис. 37.6. Фрагмент молекулы рибонуклеиновой кислоты (РНК), в котором пуриновые и пиримидиновые основания- аденин (А), урацил (U), цитозин (С) и гуанин (-удерживаются фосфодиэфирным остовом, соединяющим рибозильные остатки, связанные N-гликозидной связью с соответствующими нуклеиновыми основаниями. Обратите внимание: цепь РНК обладает определенной направленностью, на которую указывают 5- и З-концевые фосфатные остатки.

4. Так как молекула РНК представляет собой одиночную цепь, комплементарную только одной из цепей ДНК, содержание в ней гуанина не обязательно равно содержанию цитозина, а содержание аденина не обязательно равно содержанию урацила.

5. РНК может быть гидролизована щелочью до 2, З-циклических диэфиров мононуклеотидов; в роли промежуточного продукта гидролиза выступает 2, У, 5-триэфир, который не образуется при щелочном гидролизе ДНК из-за отсутствия у последней 2-гидроксильных групп; щелочная лабильность РНК (сравнительно с ДНК) является полезным свойством как для диагностических, так и для аналитических целей.

Информация, содержащаяся в одноцепочечной РНК, реализуется в виде определенной последовательности пуриновых и пиримидиновых оснований (т. е. в первичной структуре) полимерной цепи. Эта последовательность комплементарна кодирующей цепи гена, с которой «считывается» РНК. Вследствие комплементарности молекула РНК способна специфически связываться (гибридизоваться) с кодирующей цепью, но не гибридизуется с некодирующей цепью ДНК. Последовательность РНК (за исключением замены Т на U) идентична последовательности некодирующей цепи гена (рис. 37.8).

Биологические функции РНК

Известно несколько видов РНК. Почти все они непосредственно вовлечены в процесс биосинтеза белка. Молекулы цитоплазматической РНК, выполняющие функции матриц белкового синтеза, называются матричными РНК (мРНК). Другой вид цитоплазматической РНК-рибосомная РНК (рРНК) - выполняет роль структурных компонентов рибосом (органелл, играющих важную роль в синтезе белка). Адапторные молекулы транспортных РНК (тРНК) участвуют в трансляции (переводе) информации мРНК в последовательность аминокислот в белках.

Значительная часть РНК-первичных транскриптов, образующихся в эукариотических клетках, включая и клетки млекопитающих, - подвергается деградации в ядре и не играет какой-либо структурной или информационной роли в цитоплазме. В культивируемых

Рис. 37.7. Вторичная структура молекулы РНК типа «петли со стеблем» («шпилька»), возникающая вследствие внутримолекулярного образования водородных связей между комплементарными парами нуклеиновых оснований.

клетках человека обнаружен класс малых ядерных РНК которые непосредственно не участвуют в синтезе белка, но могут оказывать влияние на процессинг РНК и общую «архитектуру» клетки. Размеры этих относительно небольших молекул варьируют, последние содержат от 90 до 300 нуклеотидов (табл. 37.3).

РНК является основным генетическим материалом у некоторых вирусов животных и растений. Некоторые РНК-содержащие вирусы никогда не проходят стадию обратной транскрипции РНК в ДНК. Однако для большинства известных вирусов животных, таких, как ретровирусы, характерна обратная транскрипция их РНК-генома, направляемая РНК-зависимой ДНК-полимеразой (обратной транскриптазой) с образованием двухспиральной ДНК-копии. Во многих случаях образующийся двухспиральный ДНК-транскрипт встраивается в геном и в дальнейшем обеспечивает экспрессию генов вируса, а также наработку новых копий вирусных РНК-геномов.

Структурная организация РНК

Во всех эукариотических и прокариотических организмах существуют три основных класса молекул РНК: информационная (матричная или мессенджер) РНК (мРНК), транспортная (тРНК) и рибосомная (рРНК). Представители этих классов отличаются друг от друга размерами, функциями и стабильностью.

Информационная (мРНК) - наиболее гетерогенный в отношении размеров и стабильности класс. Все представители этого класса служат переносчиками информации от гена к белок-синтезирующей системе клетки. Они выполняют роль матриц для синтезируемого полипептида, т. е. определяют аминокислотную последовательность белка (рис. 37.9).

Информационные РНК, особенно эукариотические, обладают некоторыми уникальными структурными особенностями. 5-Конец мРНК «кэпирован» 7-метилгуанозинтрифосфатом, присоединенным к 5-гидроксилу соседнего 2-0-метилрибонуклеозида через остаток трифосфата (рис. 37.10). Молекулы мРНК часто содержат внутренние остатки 6-метиладенина и 2-0-метилированные рибонуклеотиды. Хотя смысл «кэпирования» до конца еще не выяснен, можно предположить, что образующаяся структура 5-конца мРНК используется для специфического узнавания в системе трансляции. Синтез белка начинается на 5"-(кэпированном) конце мРНК. Другой конец большинства молекул мРНК (З-конец) содержит полиаденилатную цепочку из 20-250 нуклеотидов. Специфические функции этого окончательно не установлены. Можно предполагать, что данная структура отвечает за поддержание внутриклеточной стабильности мРНК. Некоторые мРНК, включая гистоновые не содержат poly (А). Наличие poly (А) в структуре мРНК используется для отделения от других видов РНК посредством фракционирования тотальной РНК на колонках с oligo (Т), иммобилизованным на твердом носителе типа целлюлозы. Связывание мРНК с колонкой происходит за счет комплементарных взаимодействий poly (А)-«хвоста» с иммобилизованным oligo (Т).

Рис. 37.8. Последовательность гена и его РНК-транскрипта. Показаны кодирующая и некодирующая цепи, и отмечена их полярность. РНК-транскрипт, имеющий полярность комплементарен кодирующей цепи (с полярностью 3 - 5) и идентичен по последовательности (за исключением замен Т на U) и полярности некодирующей цепи ДНК.

Рис. 37.9. Экспрессия генетической информации ДНК в форме мРНК-транскрипта и последующая трансляция при участии рибосом с образованием специфической молекулы белка.

(см. скан)

Рис. 37.10. Структура «кэпа», находящегося на 5-конце большинства эукариотических матричных РНК 7-метилгуанозинтрифосфат присоединяется к 5-концу мРНК. на котором обычно находится 2-О-метилпуриновый нуклеотид.

В клетках млекопитающих, включая клетки человека, зрелые молекулы мРНК, находящиеся в цитоплазме, не являются полной копией транскрибируемого участка гена. Образующийся в результате транскрипции полирибонуклеотид представляет собой предшественник цитоплазматической мРНК, перед выходом из ядра он подвергается специфическому процессингу. Непроцессированные продукты транскрипции, обнаруживаемые в ядрах клеток млекопитающих, образуют четвертый класс молекул РНК. Такие ядерные РНК очень гетерогенны и достигают значительных размеров. Молекулы гетерогенных ядерных РНК могут иметь молекулярную массу более , в то время как молекулярная масса мРНК обычно не превышает 2106. подвергаются процессингу в ядре, и образующиеся зрелые мРНК поступают в цитоплазму, где служат матрицей для биосинтеза белка.

Молекулы транспортных РНК (тРНК) обычно содержат около 75 нуклеотидов. Молекулярная масса таких молекул составляет . тРНК также формируются в результате специфического процессинга соответствующих молекул-предшественников (см. гл. 39). Транспортные тРНК выполняют функцию посредников в ходе трансляции мРНК. В любой клетке присутствуют не менее 20 видов молекул тРНК. Каждый вид (иногда несколько видов) тРНК соответствует одной из 20 аминокислот, необходимых для синтеза белка. Хотя каждая специфическая тРНК отличается от других нуклеотидной последовательностью, все они имеют и общие черты. Благодаря нескольим внутрицепочечным комплементарным участкам, все тРНК обладают вторичной структурой, получившей название «клеверный лист» (рис. 37.11).

Молекулы всех видов тРНК имеют четыре основных плеча. Акцепторное плечо состоит из «стебля» спаренных нуклеотидов и заканчивается последовательностью ССА Именно через У-гидроксильную группу аденозильного остатка происходит связывание с карбоксильной группой аминокислоты. Остальные плечи тоже состоят из «стеблей», образованных комплементарными парами оснований, и петель из неспаренных оснований (рис. 37.7). Антикодоновое плечо узнает нуклеотидный триплет или кодон (см. гл. 40) в мРНК. D-плечо названо так из-за наличия в нем дигидроуридина, -плечо названо по последовательности Т-псевдоуридин-С. Дополнительное плечо представляет собой наиболее вариабельную структуру и служит основой классификации тРНК. тРНК класса 1 (75% от общего их числа) обладают дополнительным плечом длиной 3-5 пар оснований. Дополнительное плечо у тРНК-молекул класса 2 состоит из 13-21 пар оснований и часто включает неспаренную петлю.

Рис. 37.11. Структура молекулы аминоацил-тРНК, к 3-ССА-концу которой присоединена аминокислота . Указаны внутримолекулярные водородные связи и расположение антикодонового, ТТС- и дигидроурацилового плеч. (From J. D. Watson. Molecular biology of the Gene 3rd, ed.. Copyright 1976, 1970, 1965 by W. A. Benjamin, Inc., Menlo Park Calif.)

Вторичная структура, определяемая системой комплементарных взаимодействий нуклеотидных оснований соответствующих плеч, характерна для всех видов Акцепторное плечо содержит семь пар оснований, -плечо - пять пар оснований, плечо D - три (или четыре) пары оснований.

Молекулы тРНК весьма стабильны у прокариот и несколько менее стабильны у эукариот. Обратная ситуация характерна для мРНК, которая довольно нестабильна у прокариот, а у эукариотических организмов обладает значительной стабильностью.

Рибосомная РНК. Рибосома - это цитоплазматическая нуклеопротеиновая структура, предназначенная для синтеза белка по мРНК-матрице. Рибосома обеспечивает специфический контакт в результате которого и происходит трансляция нуклеотидной последовательности, считанной с определенного гена, в аминокислотную последовательность соответствующего белка.

В табл. 37.2 представлены компоненты рибосом млекопитающих, имеющих молекулярную массу 4,210 6 и скорость седиментации (единиц Сведберга). Рибосомы млекопитающих состоят из двух нуклеопротеиновых субъединиц - большой с

Таблица 37.2. Компоненты рибосом млекопитающих

молекулярной массой (60S), и малой, имеющей молекулярную массу (40S). 608-субъединица содержит 58-рибосомную РНК (рРНК), 5,8S-pPHK и 28S-pPHK, а также более 50 различных полипептидов. Малая, 408-субъединица включает единственную 18S-pPHK и около 30 полипептидных цепей. Все рибосомные РНК, за исключением 5S-PHK, имеют общего предшественника-45S-PHK, локализованную в ядрышке (см. гл. 40). У молекулы 5S-PHK предшественник собственный. В ядрышке происходит упаковка высокометилированных рибосомных РНК с рибосомными белками. В цитоплазме рибосомы достаточно устойчивы и способны осуществлять большое число циклов трансляции.

Небольшие стабильные РНК. В эукариотических клетках обнаружено большое число дискретных, высококонсервативных, небольших и стабильных молекул РНК. Большинство РНК этого типа обнаруживаются в составе рибонуклеопротеинов и локализованы в ядре, цитоплазме или одновременно в обоих компартментах. Размеры этих молекул варьируют от 90 до 300 нуклеотидов, содержание их - 100000-1000000 копий на клетку.

Малые ядерные нуклеопротеиновые частицы (часто называемые snurps - от англ. small nuclear ribonucleic particles), вероятно, играют существенную роль в регуляции экспрессии генов. Нуклеопротеиновые частицы типа U7, по-видимому, участвуют в формировании З-концов гистоновых мРНК. Частицы , вероятно, необходимы для полиаденилирования, a - для удаления интронов и процессинга мРНК (см. гл. 39). Табл. 37.3. суммирует некоторые характеристики небольших стабильных РНК.

Таблица 37.3. Некоторые виды небольших стабильных РНК, обнаруженные в клетках млекопитающих

ЛИТЕРАТУРА

Darnell J. et al. Molecular Cell Biology, Scientific American Books, 1986.

Hunt T. DNA Makes RNA Makes Protein, Elsevier, 1983. Lewin B. Genes, 2nd ed., Wiley, 1985.

Rich A. et al. The chemistry and biology of left-handed Z-DNA, Annu. Rev. Biochem., 1984, 53, 847.

Turner P. Controlling roles for snurps, Nature, 1985, 316, 105. Watson J. D. The Double Helix, Atheneum, 1968.

Watson J. D., Crick F.H.C. Molecular structure of nucleic acids. Nature, 1953, 171, 737.

Zieve G. W. Two groups of small stable RNAs, Cell, 1981, 25, 296.

Молекула РНК также полимер, мономерами которого является рибонуклеотиды, РНК представляет собой одноцепочную молекулу. Она построена таким же образом, как и одна из цепей ДНК. Нуклеотиды РНК похожи на нуклеотиды ДНК, хотя и не тождественны им. Их тоже четыре, и они состоят из осатков азотистого основания, пентозы и фосфорной кислоты. Три азотистых основания совершенно такие же, как в ДНК: А , Г и Ц . Однако вместо Т у ДНК в РНК присутствует близкое по строение пиримидиновое основание – урацил (У ). основное различие между ДНК и РНК – это характер углевода: в нуклотидах ДНК моносахарид – дезоксирибоза, а в РНК – рибоза. Связь между нуклеотидами осуществляется, как и в ДНК, через сахар и остаток фосфорной кислоты. В отличие от ДНК, содержание которой в клетках определенных организмов постоянно, содержание РНК в них колеблется. Оно заметно выше там, где происходит интенсивный синтез.

В отношении выполняемых функций различают несколько видов РНК.

Транспортная РНК (тРНК). Молекулы тРНк самые короткие: они состоят всего из 80-100 нуклеотидов. Молекулярная масса таких частиц равна 25-30 тыс. Транспортные РНК в основном содержатся в цитоплазме клетки. Функция их состоит в переносе аминокислот в рибосомы, к месту синтеза белка. Из общего содержания РНК клетк на долю тРНК приходится около 10%.

Рибосомная РНК (рРНК). Это крупные молекулы: в их состав входит 3-5 тыс. нуклеотидов, соотвественно их молекулярная масса достигает 1-1,5 млн. Рибосомные РНК составляют существенную часть рибосомы. Из общего содержания РНК в клетке на долю рРНК приходится около 90%.

Информационная РНК (иРНК), или матричная РНК (мРНК), содержится в ядре и цитоплазме. Функция ее состоит в переносе информации о структуре белка от ДНК к месту синтеза белка в рибосомах. На долю иРНК приходится примерно 0,5-1% от общего содержания РНК клетки. Размер иРНК колеблется в широких пределах – от 100 до 10000 нуклеотидов.

Все виды РНК синтезируются на ДНК, которая служитсвоего рода матрицей.

ДНК – носитель наследсвенной нформации.

Каждый белок представлен одной или несколькими полипиптидными цепями. Участок ДНК, несущий информацию об одной полипиптидной цепи, называют геном . Совокупность молекул ДНК клетки выполняет функцию носителя генетической информации. Генетическая информация передается как от материнской клетки дочерним клеткам, так и от родителей детям. Ген является единицей генетической , или наследственной, информации.

ДНК – носитель генетической информаци в клетке – непосредственного участия в синтезе белков не принимает. В клетках эукариот молекулы ДНК содержатся в хромосомах ядра и отделены ядерной оболочкой от цитоплазмы, где происходит синтез белков. К рибосомам – местам сборки белков – высылается из ядра несущий информацию посредник, способный пройти через поры ядерной оболочки. Таким посредником является информационная РНК (иРНК). По принципу комплементарности она синтезируется на ДНК при участие фермента, называемого РНК-полимеразой .

Информационная РНК – это однонитевая молекула, и транскрипция идет с одной цепи двунитевой молекулы ДНК. Она является копией не всей молекулы ДНК, а только части ее – одного гена у эукариот или группы рядом расположенных генов, несущих информацию о структуре белков, необходимых для выполнения одной функции, у прокариот. Такую группу генов называют опероном . В начале каждого оперона находится своего рода посадочная площадка для РНК-полимеразы, называемая промотором .это специфическая последовательность нуклеотидов ДНК, которую фермент «узнает» благодаря химическому сродству. Только присоединившись к промотору, РНК-полиммераза способна начать интез РНК. Доядя до конца оперона, фермент встречает сигнал (в виде определенной последоватльности нуклеотидов), означающий конец считывания. Готовая иРНК отходит от ДНК и направляется к месту синтеза белков.

В процессе транскрипции можно выделить четыре стадии: 1) связывание РНК -полимеразы с промотором; 2) инициация – начало синтеза. Оназаключается в образовании первой фосфодиэфирной связи между АТФ или ГТФ и вторым нуклеотидом синтезирующейся молекулы РНК; 3) элонгация – рост цепи РНК; т.е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные им нуклеотиды в транскрибируемой нити ДНК. Скорость элонгации 50 нуклеотидов в секунду; 4) терминация – завершение синтеза РНК.

Пройдя через поры ядерной оболочки, иРНК направляется к рибосомам, где осуществляется расшифровка генетической информации – перевод ее с «языка» нуклеотидов на «язык» аминокислот. Синтез полипептидных цепей по матрице иРНК, происходящий в рибосомах, называют трансляцией (лат. translation – перевод).

Аминокислоты, из котрых синтезируютсябелки, доставляются к рибосомам с помощью специальных РНК, называемых транспортными (тРНК). В клетке имеется столько же разных тРНК, сколько кодонов, шифрующих аминокислоты. На вершине «листа» каждой тРНК имеется последовательность трех нуклеотидов, комплементарных нуклеотидам кодона в иРНК. Ее называют антикодоном. Специальный фермент – кодаза – опознает тРНК и присоединяет к «черешку листа» аминокислоту – только ту, которая кодируется триплетом, комплементарным антикодону. На образование ковалентной связи между тРНК и «своей» аминокислотой затрачивается энергия одной молекулы АТФ.

Для того чтобы аминокислота включилась в полипептидную цепь, она должна оторваться от тРНК. Это становится возможным, когда тРНК поступает на рибососму и антикодон узнает свой кодон в иРНК. В рибосоме имеется два участка для связывания двух молекул тРНК. В один из этих участков, называемый акцепторным , поступает тРНК с аминокислотой и присоединяется к своему кодону (I). Эта аминокислота присоединяет к себе (акцептирует) растущую цепь белка (II)? Между ними образуется пептидная связь. тРНК, к которой теперь присоединяется вместе с кодоном иРНК в донорный участок рибосомы. В освободившийся акцепторный участок приходит новая тРНК, связанная с аминокислотой, которая шифруется очередным кодоном (III). Из донорного участка сюда вновь переносится оторвавшаяся полипептидная цепь и удлинняется еще на одно звено. Аминокислоты в растущей цепи соединены в той последовательности, в которой расположены шифрующие их кодоны в иРНК.

Когда на рибосоме оказывается один из трех триплетов (УАА, УАГ, УГА ), являющиеся «знаками препинания» между генами, ни одна тРНК не может занять место в акцепторном участке. Дело в том, что не существует антикодонов, комплементарных последовательностям нуклеотидов «знаков препинания». Оторвавшейся цепи не к чему присоединиться в акцепторном участке, и она покидает рибосому. Синтез белка завершен.

У прокариот синтез белков начинается с того, что кодон АУГ , расположенный на первом месте в копии с каждого гена, занимае в рибосоме такую позицию, что с ним взаимодействует антикодон особой тРНК, оединенной с формилментионином . Эта измененная форма аминокислоты метионина сразу попадает в донорный участок и выполняет роль заглавной буквы во фразе – с нее в бактериальной клетке начинается синтез любой полипептидной цепи. Когда триплет АУГ стоит не на первом месте, а внутри копии с гена, он кодирует аминокислоту метионин. После завершения синтеза полипептидной цепи формилметионин отщепляется от нее и в готовом белке отсуствует.

Для увеличения производства белков иРНК часто проходит одновременно не по одной, а по нескольким рибосомам. Акую структуру, объединенную одной молекулой иРНК, называют полисомой . На каждой рибосоме вэтом похожем на нитку бус конвейере синтезируются одинаковые белки.

Аминокислоты бесперебойно поставляются к рибосомам с помощью тРНК. Отдав аминокислоту, тРНК покидает рибосому и с помощью кодазы соединяется. Высокая слаженность всех «служб комбината» по производсву белов позволяет в течении нескольких секунд синтезировать полипептидные цепи, состоящие из сотен аминокислот.

Свойства генетического кода. Благодаря процессу транскрипции в клетке осуществляется передача информации от ДНК к белку

ДНК → иРНК → белок

Генетическая информация, содержащаяся в ДНК и в иРНК, заключена в последовательности расположения нуклеотидов в молекулах.

Каким же образом происходит перевод информации с «языка» нуклеотидов на «язык» аминокислот? Такой перевод осуществляется с помощью генетического кода. Код, или шифр , - это система символов для перевода одной формы информации в другую. Генетический код –это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в иРНК.

Какими же свойствами обладает генетический код?

    Код триплетен . В состав РНК входят четыре нуклеотида: А, Г, Ц, У. Если бы мы пытались обозначить одну аминокислоту одним нуклеотидом, то 16 из 20 аминокислот остались бы не зашифрованы. Двух буквенный код позволил бы зашифровать 16 аминокислот. Природа создала трехбуквенный, или триплетный, код. Это означает, что каждая из 20 аминокислот зашифрована последовательностью из трех нуклеотидов, называемой триплетом или кодоном.

    Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном. Исключения: метеонин и триптофан, каждая из которых кодируется одним триплетом.

    Код однозначен. Каждый кодон шифрует только одну аминокислоту.

    Между генами имеется «знаки препинания». В печатном тексте в конце каждой фразы стоит точка. Несколько связанных по смыслу фраз составляют абзац. На языке генетической информации таким абзацем являетсяоперон и комплементарная ему иРНК. Каждый ген в опероне прокариот или отдельный ген эукариот кодирует одну полипептидную цепочку – фразу. Так как в ряде случаев по матрице иРНК последовательно создается несколько разных полипептидных цепей, они должны быть отделены друг от друга. Для этого в генетическом годе имеются три специальных триплета – УАА, УАГ, УГА, каждый из которых обозначает прекращение синтеза одной полипептидной цепи. Таким образом, эти триплеты выполняют функцию знаков препинания. Они находятся в конце каждого гена.

    Внутри гена нет «знаков препинания».

    Код универсален. Генетический код един для всех живущих на Земле существ. У бактерий и грибов, пшеницы и хлопка, рыб и червей, лягушек и человека одни и те же триплеты кодируют одни и те же аминокислоты.

Принципы репликации ДНК. Преемственность генетического материала в поколениях клеток и организмов обеспечивается процессом репликации – удвоения молекул ДНК. Этот сложный процесс осуществляется комплексом нескольких ферментов и не обладающих каталитической активностью белов, необходимых для придания полинуклеотидным цепям нужной конформации. В результате репликации образуются две идентичные двойные спирали ДНК. Эти так называемые дочерние молекулы ничем не отличаются друг от друга и от исходной материнской молекулы ДНК. Репликация происходит в клетке перед делением, поэтому каждая дочерняя клетка получает точно такие же молекулы ДНК, какие имела материнская клетка. Процесс репликации основан на ряде принципов:


Только в этом случае ДНК-полимеразы способна двигаться по материнским нитям и использовать их в качестве матриц для безошибочного синтеза дочерних цепей. Но полное раскручивание спиралей, состоящих из многих миллионов пар нуклеотидов, сопряжено со столь значительным числом вращений и такими энергетическими затратами, которые невозможны в условиях клетки. Поэтому репликация у эукариот начинается одновременно в некоторых местах молекулы ДНК. Участок между двумя точками, в которых начинается синтез дочерних цепей, называют репликоном . Он является единицей репликации.

В каждой молекуле ДНК эукариотической клетки имеется много репликонов. В каждом репликоне можно видеть репликативную вилку – ту часть молекулы ДНК, которая под действием специальных ферментов уже расплелась. Каждая нить в вилке служит матрицей для синтеза комплементарной дочерней цепи. В ходе репликации вилка перемещается вдоль материнской молекулы, при этом расплетаются новые участки ДНК. Так как ДНК-полимеразы могут двигаться лишь в одном направлении вдоль матричных нитей, а нити ориентированы антипараллельно, то в каждой вилке одновременно ведут синтез два разных ферментативных комплекса. Причем в каждой вилке одна дочерняя (лидирующая) цепь растет непрерывно, а другая (отстающая) синтезируется отдельными фрагментами длинной в несколько нуклеотидов. Такие ферменты, названые в честь открывшего их японского ученого фрагментами Оказаки , сшиваются ДНК-лигазой, образуя непрерывную цепь. Механизм образования дочерних цепей ДНК фрагментами называют прерывистыми.

    Потребность в затравке ДНК-полимераза не способна начинать синтез лидирующей цепи, ни синтез фрагментов Оказаки отстающей цепи. Она может лишь наращивать уже имеющуюся полинуклеотидную нить, последовательно присоединяя дезоксирибонуклеотиды к ее 3’-ОН концу. Откуда же берется начальный 5’-концевой участок растущей цепи ДНК? Его синтезирует на матрице ДНК особая РНК-полимераза, называемая праймазой (англ. Primer – затравка). Размер рибонуклеотидной затравки невелик (менее 20 нуклеотидов) в сравнении с размером цепи ДНК, образуемой ДНК-поимеразой. Выполнившая сво. Функци. РНК-затравка удаляется специальным ферментом, а образованная при эом брешь заделывается ДНК-полимеразой, использующей в качестве затравки 3’-ОН конец соседнего фрагмента Оказаки.

Проблема недорепликации концов линейных молекул ДНК. Удаление крайних РНК-праймеров, комплементрных 3’-концам обеих цепей линейной материнской молекулы ДНК, приводит к тому, что дочерние цепи оказываются короче 10-20 нуклеотидов. В этом и заключается проблема недорепликации концов линейных молекул.

Проблема недорепликации 3’-концов линейных молекул ДНК решается эукариотическими клетками с помощью специального фермента – теломеразы .

Теломераза является ДНК-полимеразой, достраивающей 3’-концылинейных молекул ДНК хромосом короткими повторяющимися последовательностями. Они, располагаясь друг за другом, образуют регулярную концевую структуру длинной до 10 тыс. нуклеотидов. Помимо белковой части, теломераза содержит РНК, выполняющую роль матрицы для наращивания ДНК повторами.

Схема удлинения концов молекул ДНК. Сначала происходит комплементарное связывание выступающего конца ДНК с матричным участком теломеразной РНК, затем теломераза наращивает ДНК, используя в качестве затравки ее 3’-ОН конец, а в качестве матрицы – РНК, входящую в состав фермента. Эта стадия называется элонгацией. После этого происходит транслокация, т.е. перемещение ДНК, удлиненной на один повтор, относительно фермента. Следом идет элонгация и очередная транслокация.

В результате образуются специализированные концевые структуры хромосом. Они состоят из многократно повторенных коротких последовательностей ДНК и специфических белков.

Для поддержания жизни в живом организме происходит множество процессов. Некоторые из них мы можем наблюдать - дыхание, прием пищи, избавление от продуктов жизнедеятельности, получение информации органами чувств и забывание этой информации. Но большая часть химических процессов скрыта от глаз.

Справка. Классификация
По-научному, обмен веществ это метаболизм.
Метаболизм обычно делят на две стадии:
в ходе катаболизма сложные органические молекулы распадаются на более простые, с получением энергии; (энергия тратится)
в процессах анаболизма затрачивается энергия на синтез из простых молекул сложных биомолекул. (энергия запасается)
Биомолекулы, как видно выше, делятся на малые молекулы и большие.
Малые:
Липиды (жиры), фосфолипиды, гликолипиды, стеролы, глицеролипиды,
Витамины
Гормоны, нейромедиаторы
Метаболиты
Большие:
Мономеры, олигомеры и полимеры.
Мономеры Олигомеры Биополимеры
Аминокислоты Олигопептиды Полипептиды, белки
Моносахариды Олигосахариды Полисахариды (крахмал, целлюлоза)
Нуклеотиды Олигонуклеотиды Полинуклеотиды, (ДНК, РНК)

В столбце биополимеры находятся полинуклеотиды. Именно здесь находится рибонуклеиновая кислота - объект статьи.

Рибонуклеиновые кислоты. Строение, назначение.

На рисунке показана молекула РНК.
Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют функции по хранению, передаче и реализации наследственной информации.
Сходство и отличие РНК и ДНК
Как видно, есть внешнее сходство с известной структурой молекулы ДНК (дезоксирибонуклеиновой кислотой).
Однако, РНК может иметь как двухцепочечную структуру, так и одноцепочечную.
Нуклеотиды (пяти- и шестиугольники на рисунке)
Кроме того, нить РНК состоит из четырех нуклеотидов (или азотистых оснований, что одно и то же): аденин, урацил, гуанин и цитозин.
Нить ДНК же состоит из другого набора нуклеотидов: аденин, гуанин, тимин и цитозин.
Химическое строение полинуклеотида РНК:

Как видим, имеются характерные нуклеотиды урацил (для РНК) и тимин (для ДНК).
Все 5 нуклеотидов на рисунке:


Шестиугольники на рисунках - это бензольные кольца, в которые, вместо углерода, встраиваются другие элементы, в данном случае, это азот.
Бензол. Для справки.
Химическая формула бензола - C6H6. Т.е. в каждом угле шестиугольника находится атом углерода. 3 дополнительные внутренние линии в шестиугольнике указывают на наличие двойных ковалентных связей между этими атомами углерода. Углерод - элемент 4 группы периодической таблицы Менделеева, следовательно, у него 4 электрона могут образовать ковалентную связь. На рисунке - одна связь - с электроном водорода, вторая - с электроном углерода слева и еще 2 - с 2 электронами углерода справа. Впрочем, физически существует единое электронное облако, охватывающее все 6 атомов углерода бензола.
Соединение азотистых оснований
Комплементарные нуклеотиды друг с другом сцепляются (гибридизуются) с помощью водородных связей. Аденин комплементарен урацилу, а гуанин - цитозину. Чем длиннее на данной РНК комплементарные участки, тем прочнее будет образуемая ими структура; наоборот, короткие участки будут нестабильными. Это определяет функцию конкретной РНК.
На рисунке фрагмент комплементарного участка РНК. Азотистые основания закрашены синим цветом

Структура РНК
Сцепление многих групп нуклеотидов образуют РНК-шпильки (первичная структура):


Множество шпилек в ленте сцепляются в двойную спираль. В развернутом виде такая структура напоминают дерево (Вторичная структура):


Спирали так же взаимодействуют друг с другом (третичная структура). Видно, как разные спирали соединены друг с другом:


Другие РНК сворачиваются аналогично. Напоминает набор лент (четвертичная структура).
Заключение
Для вычисления конформаций, которые примут РНК, по их первичной последовательности существуют